Нейтронные звёзды (пульсары) - OXFORDST.RU

Нейтронные звёзды (пульсары)

uCrazy.ru

  • Войти через Соц.сети
  • Регистрация
  • Забыли пароль?

Навигация

  • 3D игры
  • Фотоприколы
  • Фотоподборки
  • Гифки
  • Демотиваторы
  • Видео
  • Знаменитости
  • Интересное
  • Фильмы и трейлеры
  • Анекдоты и истории
  • Хайтек
  • Авто / Мото
  • Спорт
  • Музыка
  • Флеш игры и ролики
  • Всячина
  • Животные
  • В хорошие руки
  • Жесть
  • Девушки
  • Конкурс
  • Новости сайта
  • On-Line Игры
  • Реклама на сайте

ЛУЧШЕЕ ЗА НЕДЕЛЮ

  • Разно-всякое
  • Всякое
  • Картинки и мемы для настро.
  • Джессика Андраде слив экс-.
  • Хроники Юленьки Г.
  • Гифки
  • Гифки
  • Весёлые
  • Так себе картинки
  • Гифки
  • Картинки и мемы
  • Бредзона
  • Весёлые
  • Чуток картинок
  • Гифки
  • Нестандартный юмор :)
  • Уникальная функция, котора.
  • 6 забытых коронных блюд из.
  • Баянисто-небаянистый юмор
  • Так себе картинки
  • Есть еще лучше!

ОПРОС

СЕЙЧАС НА САЙТЕ

КАЛЕНДАРЬ

Сегодня день рождения

Рекомендуем

Пульсары и нейтронные звезды

Пульсары являются одними из самых странных объектов во всей Вселенной. В 1967 году в Кембриджской обсерватории Джоселин Белл и Энтони Хьюиш изучали звезды и нашли нечто совершенно экстраординарное. Это был очень похожий на звезду объект, который как бы излучал быстрые импульсы радиоволн.

О существовании радио источников в космосе было известно в течении достаточно долгого времени. Но такой излучающий быстрые импульсы объект был зафиксирован впервые. Они возникали как заводные, один раз в секунду. Сначала подумали, что сигнал исходит от орбитального спутника, но эту идею очень быстро откинули. После того как было найдено еще несколько таких же объектов, их назвали пульсарами благодаря их быстро пульсирующему характеру.

Яркие пульсары обнаружили практически на каждой длине волны света. Некоторые действительно можно увидеть. Большинство людей, как правило, путает пульсары с квазарами. Но эти два объекта являются абсолютно разными. Квазары представляют собой объекты, производящие огромное количество энергии. Скорее всего, они возникли как результат огромной черной дыры в центре молодой галактики. Но пульсар — это нечто совсем другое.

Пульсары: фактор маяка

По сути пульсар — это быстро вращающаяся нейтронная звезда. Нейтронная звезда — это сильноуплотненное ядро мертвой звезды, оставшееся после взрыва сверхновой. Эта нейтронная звезда обладает мощным магнитным полем. Это магнитное поле около одного триллиона раз сильнее магнитного поля Земли. Магнитное поле заставляет нейтронную звезду излучать от ее северного и южного полюсов сильные радиоволны и радиоактивные частицы. Эти частицы могут включать в себя различные излучения, в том числе и видимый свет.

Пульсары, которые излучают мощные гамма-лучи, известны как пульсары гамма-лучей. Если нейтронная звезда располагается своим полюсом к Земле, то мы можем видеть радиоволны каждый раз, как только один из полюсов попадает в наш ракурс. Этот эффект очень похож на эффект маяка. Неподвижному наблюдателю кажется, что свет вращающегося маяка постоянно мигает, то пропадая, то появляясь опять. Таким же образом нам кажется, что пульсар мигает, когда он вращается своими полюсами относительно Земли. Разные пульсары издают импульсы разной скорости, в зависимости от размера и массы нейтронной звезды. Иногда пульсар может иметь спутника. В некоторых случаях он может притягивать своего спутника, что заставляет вращаться его еще быстрее. Самые быстрые пульсары могут издавать более ста импульсов в секунду.

Нейтронные звезды

Образование пульсара происходит, когда погибает массивная звезда, исчерпавшая свои запасы топлива. Происходит большой взрыв, известный как сверхновая звезда — самое мощное и наиболее яркое событие во Вселенной. Без противодействующей балансирующей силы ядерного синтеза, притяжение начинает стягивать звездные массы внутрь пока они не становятся очень сильно сжатыми. В пульсаре гравитация уплотняет их пока не образуется объект, состоящий в основном из нейтронов, упакованных настолько плотно, что они больше не могут существовать как обычное вещество.

Физик Чандрасекар Субрахманьян предположил, что если масса ядра разрушенной звезды в 1,4 раза больше массы самой звезды, протоны и электроны будут объединяться в нейтроны в нейтронной звезде. Это число известно сегодня как предел Чандрасекара. Если этот предел не достигается в результате разрушения ядра, тогда образуется белый карлик. Если этот лимит значительно превышен, то в результате может возникнуть черная дыра.

Разрушающаяся звезда начинает вращаться более быстро, что известно, как сохранение количества движения при вращении. Этот процесс похож на фигуристов, старающихся тесно сжать руки, чтобы вращаться еще быстрее. В результате остается быстро вращающийся шар плотно упакованных нейтронов внутри железной оболочки. Чрезвычайные силы тяжести делают эту оболочку очень гладкой и блестящей. В результате нейтронная звезда имеет лишь около 30-35 км в диаметре, содержа при этом большую часть массы первоначальной звезды с которой она была сформирована. Материя этой нейтронной звезды упакована так плотно, что кусок этой звезды размером с кусочек сахара будет весить более 100 млн. тонн на Земле.

Открытие пульсаров и нейтронных звезд

Новые пульсары обнаруживают даже сегодня с помощью больших радиотелескопов. Самый большой радиотелескоп в мире находится в Аресибо, в Пуэрто-Рико. Он был одним из ключевых инструментов в поиске пульсаров. Несколько новых пульсаров были обнаружены за последние несколько лет. Пульсар есть внутри знаменитой Крабовидной туманности (M1).

Самый быстрый пульсар PSR1937 +21 имеет период импульсов 1,56 мс или 640 раз в секунду. Самым сильным пульсаром является PSR 0329 +54 с очень медленным импульсом всего лишь в 0,715 секунд. Недавно были обнаружены такие пульсары как PSR 1257 +12. Ученые полагают, что вокруг них вращаются планеты.

Нейтронная звезда

Или их еще называют пульсарами, магнетарами, радиопульсарами, рентгеновскими пульсарами

Нейтронная звезда — очень быстро вращающееся тело, оставшееся после взрыва сверхновой звезды. При диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Такая огромная плотность возникает от вдавливания электронов в ядра, от чего они объединяются с протонами и образуют нейтроны. По сути, нейтронные звезды по свойствам, включая плотность и состав, очень похожи на атомные ядра. Но есть существенная разница: в ядрах нуклоны притягивает сильное взаимодействие, а в звездах – сила гравитации.

Что из себя представляет

Состав нейтронных звёзд

Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды — самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.

Магнитное поле

Нейтронные звёзды имеют скорости вращения до 1000 оборотов в секунду. При этом электропроводящие плазма и ядерное вещество вырабатывают магнитные поля гигантских величин.

Для примера — магнитное поле Земли -1 гаусс, нейтронной звезды — 10 000 000 000 000 гаусс. Самое сильное поле, созданное человеком, будет в миллиарды раз слабее.

Типы нейтронных звезд

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Читайте также  Адыгейский язык. Попытки создания письменности

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.

Магнетары

При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.

Рентгеновские пульсары.

Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.

Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.

При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси и оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.

Миллисекундные пульсары.

Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в белого карлика, потеряв в массе.

Экзопланеты у нейтронных звезд

Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.

Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.

На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

10 увлекательных фактов о нейтронных звездах

Как и почти все во Вселенной, звезды рождаются, живут своей жизнью, а затем умирают на протяжении миллионов, а иногда и миллиардов лет. Потребовались десятилетия, чтобы исследователи определили и каталогизировали различные типы звезд, как они формируются, и их эволюционную последовательность.

То, как звезда заканчивает свою жизнь, в конечном счете зависит от ее одной характеристики: массы. Если это будет звезда с низкой массой, то она закончится как белый карлик, черная дыра, если это массивная звезда, но все, что находится между ними, коллапсирует в нейтронную звезду.

Таким образом, нейтронная звезда — это в основном остаточное ядро коллапсировавшей звезды. Они маленькие и чрезвычайно массивные. Типичная нейтронная звезда имеет радиус между 10-13, 5 км и массу в диапазоне от 1,4 до 2,16 солнечных масс.

Нейтронные звезды возникают в результате взрыва сверхновой (происходящего на последних этапах жизни звезды), которому способствует гравитационный коллапс, который сжимает звездное ядро ​​так сильно, что оно достигает плотности атомных ядер. Со временем они могут развиваться дальше различными способами.

Здесь мы собрали 15 интересных фактов о нейтронных звездах.

10. Есть три типа нейтронных звезд

По своим уникальным характеристикам нейтронные звезды можно разделить на три подтипа; Рентгеновские пульсары, магнетары и радиопульсары. Радиопульсары или просто пульсары являются наиболее распространенным типом нейтронных звезд, излучающих мощные электромагнитные импульсы. Однако их чрезвычайно сложно обнаружить.

Поскольку пульсары излучают электромагнитное излучение от своих магнитных полюсов, их можно наблюдать только тогда, когда луч излучения направлен на Землю. С Земли этот луч будет выглядеть так, как будто он идет из фиксированной точки в пространстве. Это явление также известно как эффект маяка.

Эти пульсары, если их найти в «особом состоянии», могут дать нам бесценные знания о Вселенной.

Магнитар — это уникальный подтип нейтронной звезды, обладающий чрезвычайно мощными магнитными полями. Хотя другие характеристики, такие как радиус, температура и плотность магнитаров, аналогичны другим нейтронным звездам, они отличаются от других своими сильными магнитными полями и немного более высокой скоростью вращения.

Художественное представление магнетара

Рентгеновские пульсары также известны как пульсары с аккреционным питанием, которые обычно существуют в двойной системе звезд, где нейтронная звезда находится на орбите с другим звездным спутником. Они излучают энергию в рентгеновском спектре.

Подтипы рентгеновских пульсаров включают миллисекундные пульсары (рециркулированные пульсары), низкомассовые рентгеновские бинарные системы, среднемассовые рентгеновские бинарные системы и высокомассовые рентгеновские бинарные системы.

9. Они очень горячие и очень плотные

Температура поверхности почти каждой наблюдаемой нейтронной звезды составляет около 600 000 К, и она еще выше в новообразованных звездах. Для сравнения, Солнце имеет температуру поверхности приблизительно 5 775 K, в то время как Сириус, белый карлик, имеет температуру поверхности 9 940 K.

Нейтронная звезда компактна и настолько плотна, что ложка, полная образца материала звезды, весила бы намного больше миллиарда тонн. Ее плотность сильно варьируется, которая увеличивается с глубиной. Вблизи ядра нейтронная звезда становится плотнее атомного ядра.
Кроме того, их магнитное поле примерно в один квадриллион раз, а гравитационное поле примерно в 200 миллиардов раз сильнее, чем у Земли. Однако, причина их мощного магнитного поля остается загадкой.

Читайте также  Двигательная активность и роль физкультуры

8. Ближайшая нейтронная звезда

Художественная концепция «изолированной нейтронной звезды»

Еще в 2007 году группа исследователей обнаружила своеобразный рентгеновский источник в созвездии Малой Медведицы на расстоянии 250-1000 световых лет от Земли, который они позже определили как нейтронную звезду. Возможно, это может быть ближайшая к Земле нейтронная звезда.

Официально обозначенная как 1RXS J141256.0 + 792204, нейтронная звезда получила прозвище Кальвера после антагониста популярного фильма 1960-х годов «Великолепная семерка». В отличие от большинства наблюдаемых звезд, Кальвера принадлежит к редкой группе изолированных нейтронных звезд, у которых нет остатка сверхновой звезды и звезды-компаньона.

7. В Млечном Пути есть около двух тысяч известных пульсаров

Согласно оценкам, основанным на количестве взрывов сверхновых, в нашей галактике Млечный Путь должно присутствовать по меньшей мере 100 миллионов нейтронных звезд. Однако на сегодняшний день астрономы обнаружили лишь менее двух тысяч пульсаров (наиболее распространенный тип нейтронной звезды).

Этот огромный контраст в численности мог быть вызван их возрастом. Нейтронным звездам, как правило, миллиарды лет, что дает им достаточное время для охлаждения. Без необходимой энергии для излучения на разных длинах волн многие пульсары становятся почти невидимыми для наших спутников. Даже молодые пульсары могут остаться незамеченными из-за их узкого поля излучения.

6. Самая быстрая нейтронная звезда вращается со скоростью 716 раз в секунду

Новорожденные нейтронные звезды могут достигать чрезвычайно высокой скорости вращения благодаря сохранению момента импульса. Самая быстрая вращающаяся нейтронная звезда, зарегистрированная на сегодняшний день, это PSR J1748-2446ad, расположенная в созвездии Стрельца, на расстоянии около 18 000 световых лет от Земли.

Далекий пульсар вращается с бешеной скоростью 716 раз в секунду или 43 000 оборотов в минуту. Исследования подтвердили, что звезда имеет массу чуть меньше двух солнечных масс и радиус менее 16 км.

5. Скорость их вращения может увеличиться

В некоторых случаях нейтронная звезда в двойной системе может начать поглощать аккрецированную материю или плазму от своей звезды-компаньона. Этот процесс может значительно увеличить скорость вращения нейтронной звезды, а также может изменить ее форму на сжатый сфероид. Эти изменения вызваны взаимодействием магнитосферы звезды и плазмы.

Хотя этот феномен впервые наблюдался в нескольких рентгеновских пульсарах, таких как Centaurus X-3 и Hercules X-1, в настоящее время он наблюдается и в других подобных пульсарах. С другой стороны, также регистрируется долгосрочное уменьшение периода импульса Centaurus X-3.

4. Нейтронные звезды могут иногда подвергаться «сбоям»

Художественная концепция «звездного землетрясения»

Сбой в астрономических терминах означает внезапное увеличение скорости вращения пульсирующей нейтронной звезды. Считается, что это внезапное увеличение вызвано явлением, известным как звездное землетрясение, — внезапным изменением звездной коры. Однако это научно не доказано. В результате землетрясения экваториальный радиус звезды уменьшается еще больше, и, поскольку момент импульса сохраняется, его скорость увеличивается.

Ряд недавних исследований показали, что уровень энергии, выделяющейся во время звездного землетрясения, будет недостаточным для возникновения сбоя. Вместо этого была выдвинута новая теория, в которой эти сбои могут быть объяснены с помощью возмущений в гипотетическом сверхтекучем ядре пульсара.

3. Может существовать в сложной двойной системе

Большинство наблюдаемых нейтронных звезд существуют в двойной системе, где они либо соединены с белыми карликами, звездами главной последовательности, красными гигантами, либо с другой нейтронной звездой. Исследователи также теоретизировали возможность создания системы нейтронных звезд и черных дыр, которая, в случае ее обнаружения, могла бы стать святым Граалем физики .

Но в 2003 году международная группа радиоастрономов из обсерватории Паркса (Австралия) обнаружила двойную систему с двумя пульсарами, то есть двумя пульсирующими нейтронными звездами в гравитационно связанной системе. Это единственная известная нам двойная система пульсаров. Два пульсара обозначены как PSR J0737-3039A и PSR J0737-3039B.

2. Нейтронные звезды также могут принимать планеты

Художественная концепция системы PSR B1257 + 12

Как и другие, нейтронные звезды могут также принимать планеты и даже иметь четко определенную планетную систему. Теоретически, эти экзопланеты могут быть местными, захваченными или существующими в околоземной форме (планета в двойной системе звезд).

Кроме того, пульсирующая нейтронная звезда в двойной системе может полностью удалить атмосферу своей звезды-компаньона, оставив только голую небесную массу. Эти массы можно интерпретировать либо как планету, либо как звездный объект.

Только две такие планетные системы были подтверждены на сегодняшний день. Первая состоит из трех планет, а именно Полтергейста, Фобетора и Драугра, вращающихся вокруг PSR B1257 + 12. Вторая система содержит только один внесолнечный мир, и она вращается вокруг PSR B1620-26.

1. Столкновение двух нейтронных звезд

17 августа 2017 года около 70 различных обсерваторий по всему миру, включая Virgo и LIGO, обнаружили сигнал гравитационной волны, теперь известный как GW170817. Эта гравитационная волна возникла в течение последних нескольких минут слияния двух нейтронных звезд. Хотя это было не первое обнаруженное открытие, оно считается прорывным открытием в астрономии.

Причина этого заключается в том, что все ранее записанные гравитационные волновые сигналы были вызваны слиянием черных дыр, которые не испускают никакого значительного электромагнитного сигнала. Вскоре после столкновения космический гамма-телескоп Ферми наблюдал короткий гамма-всплеск, обозначенный как GRB 170817A.

Несколько коротких фактов

Hulse-Taylor binary или PSR B1913+16-это пульсар, который вместе с нейтронной звездой образует бинарную звездную систему. После своего открытия в 1972 году он стал первым в истории бинарным пульсаром, который был обнаружен и оказался решающим в изучении гравитационных волн. Это открытие и дальнейший анализ принесли Расселу Алану Халсу и Джозефу Хутону Тейлору-младшему Нобелевскую премию по физике в 1993 году.

Сопоставимый с пределом Чандрасекара (максимальная масса, при которой белый карлик может оставаться стабильным), предел Толмана–Оппенгеймера–Волкофа является верхним потолком массы нейтронной звезды, после чего мертвая звезда далее коллапсирует в черную дыру. Его значение колеблется от 1,5 до 3,0 солнечной массы.

Существование нейтронных звезд было предсказано астрономами Вальтером Бааде и Фрицем Цвицким в 1934 году, более чем за три десятилетия до того, как они были впервые подтверждены.

Великолепная семерка — это имя, данное группе молодых и изолированных нейтронных звезд, которые расположены на расстоянии от 390 до 1630 световых лет и находятся ближе всего к Земле. Первой нейтронной звездой в группе был RX J1856.5-3754, который был открыт в 1992 году, а затем подтвержден в 1996 году.

Остальные шесть звезд в группе: RX J0806.4-4132, RX J0720.4-3125, RBS1556, RBS1223, RX J0420.0-5022 и 1RXS J214303.7 + 065419. Каждый из семи источников рентгеновского излучения обнаружен спутником ROSAT.

Что такое пульсары и как они образовались? Описание, фото и видео

Что такое пульсар?

Пульсары – это космические источники радио-, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Пульсар — это маленькая вращающаяся звезда. На поверхности звезды есть участок, который излучает в пространство узконаправленный пучок радиоволн. Наши радиотелескопы принимают это излучение тогда, когда источник повернут в сторону Земли. Звезда вращается, и поток излучения прекращается. Следующий оборот звезды — и мы снова принимаем ее радио послание.

Структура пульсара

Читайте также  Авиаракетно-космическая промышленность США

Как действует пульсар?

Так же действует маяк с вращающимся фонарем. Издали мы воспринимаем его свет как пульсирующий. То же самое происходит и с пульсаром. Мы воспринимаем его излучение, как пульсирующий с определенной частотой источник радио волнового излучения. Пульсары относятся к семейству нейтронных звезд. Нейтронная звезда — это звезда, которая остается после катастрофического взрыва гигантской звезды.

Как действует пульсар?

Пульсар – нейтронная звезда

Звезда средней величины, например Солнце, размерами в миллион раз превосходит такую планету, как Земля. Гигантские звезды в поперечнике в 10, а иногда и в 1000 раз больше Солнца. Нейтронная звезда — это гигантская звезда, сжатая до размера крупного города. Это обстоятельство и делает поведение нейтронной звезды очень странным. Каждая такая звезда равна по массе гигантской звезде, но эта масса стиснута в чрезвычайно малом объеме. Одна чайная ложка вещества нейтронной звезды весит миллиард тонн.

Как образуются пульсары?

Вот как это происходит. После того как звезда взрывается, ее остатки сжимаются под действием гравитационных сил. Ученые называют этот процесс коллапсом звезды. По мере развития коллапса сила гравитации растет, а атомы вещества звезды все теснее и теснее прижимаются друг к другу. В нормальном состоянии атомы находятся на значительном расстоянии друг от друга, потому что электронные облака атомов взаимно отталкиваются. Но после взрыва гигантской звезды атомы так сильно прижаты и спрессованы, что электроны буквально впрессовываются в ядра атомов.

Ядро атома состоит из протонов и нейтронов. Электроны, втиснутые в ядро, реагируют с протонами, и в результате образуются нейтроны. С течением времени все вещество звезды становится гигантским клубком спрессованных нейтронов. Рождается нейтронная звезда.

Когда возникли пульсары?

Ученые полагают, что пульсары звезды существуют с незапамятных времен. Во всяком случае, они были задолго до того, как их открыли. Первые свидетельства их существования получены в ноябре 1967 года, когда несколько радиотелескопов в Англии нащупали в небе неведомый ранее источник излучения. В космосе есть много источников радиоволн. Например, молекулы воды и аммония, дрейфующие в межзвездном пространстве, излучают радиоволны. Эти волны улавливаются тарелочными антеннами радиотелескопов.

Новый источник радиоволн, однако, не был похож на другие. Студентка – старшекурсница Джослин Белл изучала радиоволны, зарегистрированные самописцами радиотелескопа. Она обратила внимание на регулярно повторяющиеся вспышки электромагнитного излучения, которые поступали на антенну телескопа с интервалом в 1,33733 секунды.

Когда новость об открытии Белл стала достоянием широкой публики, то некоторые ученые решили, что Белл приняла послание чужой цивилизации. Несколько месяцев спустя был зарегистрирован другой источник пульсирующего радиоизлучения. Ученые оставили мысль об их искусственном происхождении. Было решено, что эти источники — сверхплотные звезды. Их назвали пульсарами из – за пульсирующего характера излучения. Пульсары оказались теми самыми нейтронными звездами, за которыми ученые уже давно охотились. С тех пор были открыты сотни подобных звезд.

Почему пульсары пульсируют?

Ученые считают, что причина в их быстром вращении. Все звезды, подобно планетам, вращаются вокруг своей оси. Например, Солнце совершает один оборот за один месяц. При уменьшении размера вращающегося тела оно начинает вращаться быстрее. Представьте себе фигуриста, который вращается на льду. Когда он прижимает руки к телу, вращение резко ускоряется. То же происходит со сверхплотными звездами. Пульсар размером с Лос-Анджелес вращается со скоростью один оборот в секунду. Другие пульсары могут вращаться еще быстрее. Пульсары могут вращаться со скоростью до 1000 оборотов в секунду

В этом вращении и кроется причина пульсирующего излучения. Пульсары окружены сильным магнитным полем. Вдоль силовых линий этого магнитного поля перемещаются протоны и электроны. Как известно, сила магнитного поля возрастает у северного и южного магнитных полюсов. В этих точках скорость перемещения протонов и электронов становится очень большой. При таком разгоне частицы выделяют кванты энергии в диапазоне от рентгеновских лучей до радиоволн. Так как пульсар вращается, а источник излучения вращается вместе с ним, то мы воспринимаем излучение пульсара только в тот момент, когда источник повернут в сторону Земли. Точно так же мы воспринимаем свет маяка с вращающимся фонарем.

Интересное видео о пульсарах

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Виды и особенности пульсаров

Как известно, пульсары появляются после вспышек сверхновых звёзд. Можно сказать, это продукт данных вспышек.
Надо знать, что первый пульсар открыл в 1967 году Энтони Хьюиш.
Строение и состав пульсаров рассматриваются только теоретически и с помощью математических расчётов. Главным образом состоят они из нейтронов, которые составляют ядро. При чём в центре наблюдается наибольшая плотность, превышающая ядерную в несколько раз. В их небольшой атмосфере сконцентрировано всё излучение. Покрывает это скопление кора из плотно расположенных электронов и ионов.

Э́нтони Хью́иш — английский физик, лауреат Нобелевской премии по физике 1974 года

Мощное магнитное поле пульсаров вырабатывают ядерное вещество и плазма. Происходит это при скорости вращения примерно 1000 оборотов в секунду. Для сравнения, поле Земли в миллиарды раз меньше.

Миллисекундные пульсары

Также пульсар является вращающейся нейтронной звездой. Поскольку периоды вращения тела короткие, то он должен иметь плотную структуру. Как оказалось, у разных пульсаров время оборота может быть разное. Таким образом, учёные выделили миллисекундные пульсары. Надо сказать, что это одни из самых старых объектов, которые имеют слабое магнитное поле. Такие объекты характеризуются периодом вращения от одной до десяти миллисекунд.

Пульсар PSR J1748-2446ad

Их происхождение носит теоретический характер. Считается, что ранее это были пульсары с небольшим временем оборота, который со временем увеличился. Поэтому многие называют их раскрученными.

Рентгеновские пульсары

Это тип нейтронных звёзд, которые испускают рентгеновское излучение. Такой источник космического излучения характеризуется переменными импульсами.
К удивлению, это тесная двойная система, состоящая из обычной звезды и нейтронной.

Радиопульсары

На самом деле они составляют большую группу. Это космические объекты, с периодически повторяющимися импульсами. Зафиксировать их можно, например, с помощью радиотелескопа.

Радиопульсар PSR B1913+16 (двойной пульсар)

Оптические пульсары

Помимо всего прочего, установлено, что существуют оптические пульсары. Их излучение можно обнаружить в оптическом диапазоне электромагнитного спектра.

Пульсар Vela

Гамма-пульсары

На самом деле, это самые мощные источники гамма-излучения во Вселенной. Как известно, гамма- это электромагнитное излучение, которое имеет малую длину волн. К тому же, это определённый поток фотонов, обладающий высокой энергией.

Магнетары

По данным учёных, в космосе существуют нейтронные звёзды, с невероятно сильным магнитным полем. Такие объекты возникают при условии достаточной массы звезды перед взрывом. Они получили название магнетары.
Сначала астрономы только предполагали их наличие, но в 1998 году получили доказательство своих теорий. Они наблюдали мощную вспышку рентгеновского и гамма-излучения от одного из объектов в созвездии Орла. На данный момент это малоизученные космические тела. Поэтому они являются одними из загадочных объектов Вселенной, и разумеется, интересными.

Представление магнетара

Важно, что наблюдать пульсар можно, если он находится под определённым углом вращения.
К сожалению, учёные так и не пришли к выводу, почему умершая звезда становится источником излучения, и что заставляет некоторые её части стремительно вращаться. Но не исключено, что мы докопаемся до истины.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: