Кокс и коксование - OXFORDST.RU

Кокс и коксование

Коксохимическая промышленность

Коксохимия – обособленная часть химии и химической промышленности, специализирующаяся на переработке природного топлива (каменного угля) в кокс методом коксования. При этом даже побочные продукты, образующиеся в процессе (коксовый газ, масла, смолы), становятся исходным сырьем для ряда других производств: изготовления удобрений, химических реагентов, выпуска полимеров, моющих средств и прочего. Поэтому нужность этой отрасли сложно переоценить.

История отрасли

Коксовый уголь долгое время не находил промышленного применения. И это несмотря на то, что как ископаемое он был известен давно. Массовое использование началось только с середины XVIII века после того, как при доменной плавке стал использоваться кокс, а не древесный уголь.

Извлечение побочных продуктов из коксового газа началось гораздо позже, так как до этого времени считалось, что смола, содержащаяся в газе – просто отход производства, поэтому она не находила практического применения. Хотя уже тогда промышленники знали, что эти «побочные продукты» содержат бензол, аммиак, нафталин, однако технологии тех времен попросту не позволяли извлечь их.

Ситуация изменилась во второй половине XIX века: в это время налаживалось производство синтетических красителей, а потому спрос на смолу, бензол и прочие «отходы» коксохимической промышленности вырос.

В России, несмотря на богатейшие месторождения марганцевых и железных руд, каменного угля и известняков, коксохимическая промышленность начала «расти» только после Октябрьской революции. Правда, развивалась отрасль гигантскими темпами: строились заводы, оснащенные по последним техническим возможностям.

Начавшаяся в 1941 году ВОВ временно затормозила развитие промышленности, однако в период 1946-1950 гг. все разрушенные заводы были восстановлены и даже запущены новые.

В настоящее время отрасль продолжает развиваться: разрабатываются месторождения, изыскиваются новые технологии обработки сырья и переработки отходов.

Область применения

Основной потребитель коксохимической отрасли – черная металлургия (доменное производство). При этом уголь должен обладать определенными характеристиками:

  • приемлемым содержанием примесей (серы и влаги);
  • более высокими температурами сгорания;
  • возможностью спекаться (это обуславливает наличие витрена в составе) и приобретать пластическое состояние;
  • «правильной» калорийностью;
  • необходимой механической прочностью.

Несоблюдение этих требований приведет к расстройству хода домны.

Примечание: только 10% каменного угля подвергаются коксованию.

Также находят применение и побочные продукты. Речь идет о таких веществах:

  • коксовый газ – используется как промышленное топливо и сырье для химического синтеза;
  • каменноугольная смола – содержит около 300 различных компонентов, среди которых толуол, бензол, фенол, нафталин, ксилол;
  • надсмольная вода – слабый водный раствор аммиака и аммонийных солей, служит для получения сульфата аммония (удобрение) и аммиачной воды.

Они используются «смежными» индустриями:

  • цветной металлургией;
  • при изготовлении стройматериалов;
  • для металлообработки;
  • пищевой индустрией (изготовление сахара);
  • производством электродов;
  • при производстве электрокорунда;
  • производством огнеупоров;
  • для изготовления искусственного графита;
  • в химической промышленности (изготовление углеродистого кальция, карбида кремния, фосфора, соды, сульфида натрия) и других отраслях.

Есть еще одна область применения – бытовая (топливо). В этом случае к продукту не предъявляется высоких требований относительно его прочности.

Сырье и виды кокса

Основной продукт – искусственное твердое топливо (кокс). Получается он в процессе нагрева природного горючего (древесина, каменный уголь, нефтепродукты) до высоких температур. В зависимости от состава и качества исходного материала, а также от техники его обработки можно получить несколько видов продукта:

  • Нефтяной (низкозольный – до 0,8%). Его получают путем пиролиза (термическое разложение без доступа кислорода) и крекинга (высокотемпературная переработка) жидких отходов нефтепроизводства.
  • Электродный пековый (зольность до 0,3%) – результат коксования каменноугольного пека при высоких температурах.
  • Каменноугольный – самый распространенный – выделяют доменный, литейный, бытовой и прочие виды.

По качеству наилучшим считается доменный кокс.

Процессы производства

Условно процесс можно разделить на три стадии:

  1. Подготовка. Сюда относится обогащение малозольных коксующихся углей с низким содержанием серы – это необходимо, чтобы удалить примеси, затем последующее измельчение (в результате получаются «угольные зерна» размером до 0,3мм), смешивание нескольких пород угля, сушка полученной смеси (шихты).
  2. Коксование. На этой стадии полученную смесь загружают в коксовую печь на 14-16 часов при температуре 900-1050°C. Полученный продукт (спекшийся «коксовый пирог») выталкивается специальными устройствами в железнодорожные вагоны, где он будет охлаждаться азотом или водой.
  3. Полученная при охлаждении парогазовая смесь через газосборник отводится для улавливания и переработки.

Полученные газо- и парообразные продукты также нуждаются в охлаждении. Делается это при помощи воды, которая впрыскивается (она необходима для разделения газовой смеси). Процесс дальнейшего «остывания» проходит в кожухотрубчатых холодильниках. Полученные вещества (конденсаты) смешивают. Затем оттуда извлекают надсмольную воду и каменноугольную смолу.

Следующая стадия – очистка сырого коксового газа от аммиака и сероводорода:

  • улавливание фенола и сырого бензола происходит в результате промывки газа специальным поглотительным маслом;
  • улавливание пиридиновых оснований происходит при участии серной кислоты.

«Чистый» коксовый газ используют как топливо в батареях коксовых печей.

Из надсмольной воды выделяется аммиак, фенолы, пиридиновые основания.

Оставшуюся воду, предварительно разбавленную технической, используют для охлаждения кокса после печи или направляют на очистные сооружения с целью последующей биоочистки.

Из каменноугольной смолы ректификацией (разделение многокомпонентных смесей за счет противоточного массообмена между паром и жидкостью) получают такие фракции:

  • каменноугольный пек;
  • нафталиновую;
  • антраценовую;
  • поглотительную.

Из них в последующем будут выделены каменноугольные масла, фенантрен, фенолы, антрацен, нафталин.

Наиболее крупные коксохимические представители

  • «Алтай-Кокс»;
  • «Кокс» (г. Кемерово);
  • «Губахинский кокс»;
  • «Москокс»;
  • ООО «Мечел-Кокс»;
  • «Уральская сталь»;
  • «Северсталь Ресурс»;
  • «ММК – Коксовый цех»;
  • «Евраз»;
  • «УралМеталлИнвест».

Другие компании, работающие в данной отрасли, представлены в разделе Коксохимические предприятия.

Влияние на экологию

На всех стадиях производства происходит выделение вредных веществ (аммиак, сероводород, угарный газ, бензол, синильная кислота). Это наносит вред не только экологии, но и здоровью человека (влияет на нормальную работу печени, системы кроветворения, органов дыхания и пр.). Кроме того, действие токсических веществ может усиливаться (эффект суммации).

Причем распределение токсических веществ «по окрестностям завода» с течением времени происходит неравномерно: в одном месте показатели могут продемонстрировать небольшие отклонения от нормативов, а в другом – значительные.

Для того чтобы улучшить экологическую ситуацию в регионах расположения коксохимических предприятий, нужно продолжать совершенствовать технологические процессы: стараться довести их до малоотходного или безотходного производства. Но это потребует значительных финансовых инвестиций. Поэтому для начала необходимо хотя бы вывести из использования устаревшие агрегаты и оборудование (а таких на заводах большинство) и заменить их на более новые аппараты, оснащенные современными природоохранными установками.

Трудности и перспективы отрасли

Несмотря на свою полезность и востребованность, эта отрасль промышленности также имеет свои сложности. В первую очередь они касаются сырья: большинство угля на территории России добывается открытым способом, а это значит, что спекаемость у этого материала недостаточна для того, чтобы получить кокс высокого качества.

Примечание: сырье, поставляемое из соседних стран, хотя и имеет более высокую спекаемость, но также содержит и большое количество примесей (сера). Полученный из них кокс не будет обладать необходимой прочностью.

Кроме того, многие коксохимические предприятия России находятся на значительном расстоянии от места добычи (например, уголь из Кузбасса нужно везти в центр страны или на Урал), поэтому транспортировка материала всегда связана со значительными расходами. А еще с потерями: уголь перевозится в открытых вагонах, поэтому часто большое количество сырья попросту остается на железнодорожном полотне. Все это будет накладывать свой отпечаток на себестоимость конечного продукта.

Однако спрос на сталелитейную продукцию только растет. То же самое можно сказать и о производстве чугуна. Это приводит к тому, что потребности в коксе «элитного» качества будут только прогрессировать, что, возможно, сделает отрасль более привлекательной в плане инвестиций. А увеличившееся финансирование позволит вывести индустрию на более высокий уровень.

Кокс и промышленность

Возрастающая ценность основных используемых источников энергии приводит к разработке новых технологий в области энергетики и топлива.
Рост цен на природный газ, электрическую энергию, различные виды топлива особенно остро сказывается на затратах производства, что ложится в себестоимость продукции и, как следствие, ложится на конечного потребителя.

Коксующийся уголь за 2016 год подорожал на 126%, то есть более, чем в 2 раза.

В себестоимости готовой стальной продукции затраты на кокс составляют около 50%.

Коксующийся уголь добывают коксованием каменного угля. Твердое топливо под названием кокс, представляет собой огромную техническую ценность.

Не менее 10% всего каменного угля подвергают коксованию, это говорит о важности кокса в энергетике и промышленности, в частности, металлургической- при выплавке чугуна.

В доменном производстве применяют исключительно доменный кокс, который применяется и при восстановлении металлов из руды, и в качестве разрыхлителя шихтовых материалов.
В литейном производстве используют каменноугольный или литейный кокс, в химмической промышленности и при производстве ферросплавов — его специальные разновидности.

В металлургической промышленности использовать некоксующийся уголь- запрещено.
Коксующиеся угли ценятся выше, чем некоксующиеся.

Уголь

Запасы угля в мире.

Запас угля нашей планеты расположенного на глубинах до 1800 метров оценивается в 12 000-23 000 млрд. тонн, а исключив недостоверные оценки — в 14000–16000 млрд. тонн.

Мировой геологический запас угля, содержащихся в недрах угленосных формациях по данным на 1980 г., оценивались в 14311 млрд. т (Из них 57% запасов приходилось на Азию, 30% – на Северную Америку, 13% — на остальные континенты). По данным на 2013г мировые запасы угля оценивают в 891 531 млн. тонн.

Запасы угля. Добыча угля

Основное количество общего запаса угля находится на глубинах до 600 м. Стоит отметить, что в некоторых крупных бассейнах, таких, как Донецкий (Украина) и Рурский (Германия и Бельгия), запас угля находящегося на глубине до 600 м практически выработаны, а оставшиеся запасы содержатся на значительно больших глубинах.

В 2016 году Украина увеличила добычу угля на 2,82% (на 1,12 млн тонн) до 40,86 млн тонн, по сравнению с 2015 годом.

Как получают кокс

Кокс — не весь каменный уголь, а его нелетучий углеродистый остаток. Для его получения уголь должен быть следующим:

  • жирным,
  • отощенно-спекающимся,
  • газовым,
  • слабоспекающимся,
  • коксовым.

По данным МЭА (IEA) в 2015 году в мире произвели 1,09 млрд тонн коксующегося угля, что на 1,6% меньше, чем в 2014. Производство Китая составило 611,1 млн т, или 56,1% от общего количества.

Основные характеристики коксующегося угля

При коксовании учитываются такие показатели, как:

  • спекаемость,
  • приобретение пластичности,
  • технический состав,
  • количесво примесей,
  • температура сгорания.

Изменения этих характеристик влияет на стадии распределения шихты в печи.

Процесс коксования

Все процессы коксования происходят в каменном угле при его нагревании.

  1. Для начала его измельчают и смешивают, с целью получения, так называемой, смеси коксования или шихты.
  2. Далее производится само коксование. Прокаливание смеси, в течении 15 часов, в камере печи при высокой температуре (+ 1000-1200 град. по Цельсию). В таких печах используется газовый нагрев с минимальным доступом воздуха.
  3. Изъятие «коксового пирога» из печи.

Кокс в доменом производстве

Одним из основных направлений использования коксующегося угля является доменное производсто.

Читайте также  Обеспечение электробезопасности. Виды освещения

С 18 века кокс является основным источником углерода в доменном процессе. С 1960 года до настоящего времени в доменном процессе всё больше и больше используют дополнительные топлива, такие как мазут, смола, уголь и природный газ.

Дополнительные топлива вдуваются в печь через воздушные фурмы, снижая теоретическую температуру горения топлива на фурмах. Для компенсации снижения теоретической температуры горения дутьё обогащают кислородом.

За последние 50 лет расход кокса в доменном производстве значительно снизился.

Это произошло благодаря:

  • вдуванию в доменные печи дополнительных топлив (При вдувании пылеуглеродного топлива нормальной практикой считается работа доменной печи с расходом кокса около 300 килограмм на одну тонну чугуна, вместо привычных 500кг/тн)
  • улучшению качества шихтовых материалов,
  • повышению температуры дутья,
  • увеличению объема печи,
  • усовершенствованию управления процессом.

Функции кокса в доменной печи

Кокс и железорудное материалы в доменную печь загружают чередующимися слоями.

Структура слоя кокса способствует распределению газа по сечению и проникновению его в слои железорудных материалов.

Наиболее важными функциями кокса являются:

  • Генерация в процессе горения на формах тепла и восстановленного газа, необходимого для восстановления и плавления железорудных материалов.
  • Создание в печи газопроницаемой структуры, обеспечивающей необходимое распределение газа по сечению печи и прохождение его через железорудные материалы.
  • Создание в нижней части печи прочной структуры (коксовой насадки), проницаемость для жидких продуктов плавки. Кокс остается твердым и пористым материалом при его нагреве до высоких температур (более 2000 градусов Цельсия), что имеет особое значение в горне и зоне когезии. Под зоной плавления кокс остается единственным твердым материалом. Столб всей шихты заполняющий доменную печь, поддерживается слоем кокса, заполняющего нижнюю часть печи- коксовой насадкой.

Коксовая насадка должна быть хорошо проницаема для продуктов плавки, чтобы чугун и шлак могли стекать по ней из зоны плавления в горн, накапливаться и свободно перетекать к летке во время выпуска.

Участие в процессах прямого восстановления железа, кремния, марганца, науглероживания чугуна в качестве поставщика углерода.
При прохождении в доменной печи кокс подвергается механическому и химическому воздействию. Средний размер кусков уменьшается, при этом показатель его холодной прочности (I40) остается постоянным.

Использование концентрированного нелетучего угля.

Нелетучий углеродистый остаток повышает газопроницаемость доменных зарядов, воздействующих на него. Температура в печи должна быть максимально высокой, а это возможно лишь при использовани концентрированных нелетучих материалов. Пар и газ обеспечивают в печи необходимую температуру, которая потреблялась бы для газообразования от самой печи. Углеродистый остаток должен быть плотным и тяжелым, что бы загрузить в горн максимальное количество горючих материалов.

Качество кокса

Качество кокса можно описать двумя широкими категориями:

      1. Состав.
      2. Механическая холодная и горячая прочность.

Важные характеристики состава — содержание золы и влажность кокса. Оба показатели должны быть как можно меньше.

Содержание золы обычно составляет 8-12 % и зависит от зольности используемых углей.

Влажность является последствием тушения и последующей транспортировки и хранения кокса.

Другие важные показатели химического состава — содержание серы и щелочей.
Качество кокса влияет на износ футеровки горна.

Физическим характеристикам качества Кокса относятся следующие:

      • Размеры, гранулометрический состав. Средний размер металлургического кокса обычно составляет от 45 до 55 миллиметров миллиметров. Для обеспечения высокой проницаемости слоя кокса гранулометрический состав его должен быть узким. Повышенное содержание в коксе фракции более 80 указывает на плохое регулирования процесса коксования.
      • Сопротивление физическому разрушению при транспортировке и других механических воздействиях. Показателями, которые оценивает эту характеристику являются — I40, М40, «Стабильность». Данные показатели указывают на гранулометрический состав кокса после его химической стабилизации.
      • Стойкость к истиранию, которая характеризует показателями — I10, М10, «Твердость».
      • Реакционная способность кокса. Кокс может реагировать с CO2, что приводит к его разупрочнение и увеличивает его расход в доменной печи. Кокс с меньшей реакционной способностью (показатели реакционной способности кокса — CRI) и высокой горячей прочностью ( показатель горячей прочности — CSR) имеет более высокую механическую прочность в нижней части печи.
      • Постоянство качественных характеристик кокса, особенно его размера и гранулометрический состав, оказывает большое влияние на работу доменной печи.

Качество кокса в основном зависит от качества используемой угольной шихты, хотя ее подготовка, время коксования, состояние оборудования и способ тушения также оказывают влияние на качество кокса.

Оптимизация угольной шихты сама по себе является искусством, в котором следует учитывать множество важных факторов.

К ним относятся содержание летучих веществ в угле, давление газа, выделяющегося из угля в процессе коксования.

Получаемый кокс должен достаточно уменьшиться в объеме, чтобы его легко было вытолкнуть из камеры коксования, а давление выделяющегося при коксовании газа не должно быть высоким, чтобы не повредить стенки камеры коксования.

Скорость коксования зависит от температуры. Чем выше скорость коксования, тем больше трещин образуется в коксовом «пироге» и тем меньше размер кусков полученного кокса. Среднее время коксования 16- 24 часа.

Заключение

Сталелитейные предприятия являются основными покупателями коксующегося угля. Кроме них кокс применяется в цветной металлургии и в других производствах. В мире для производства 1 628 млн тонн стали необходимо использовано около 800 млн тонн кокса.

В черной металлургии для производства одной тонны чугуна уходит около 0,4 т кокса. Это достигается за счет использования экономных и альтернативных технологий (вдувание пылеуглеродного топлива), заменяющих кокс, которые развиваются и применяются несколько ограниченно.

Наиболее активно технология вдувания пылеугольного топлива используется в Азии . Приблизительно 45% из действующих комплексов PCI (без учета Китая) установлены на азиатских заводах в Японии, Южной Корее, Индии.

В 2017 году азиатскими металлургами планируется открытие новых доменных производств, с установками PCI, что будет способствовать снижению расхода кокса.

Учитывая дефицит угля, при сохранении такой тенденции, в ближайшие годы мировая металлургическая промышленность продолжит характеризоваться устойчивым спросом на кокс и высокими ценами на продукцию.

Установка замедленного коксования

Назначение

Коксование — процесс переработки жидкого или твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуется твёрдый продукт —нефтяной или каменноугольный кокс и летучие продукты.

Общий вид установки замедленного коксования

Типы коксования по аппаратурному оформлению:

  1. замедленное коксование в необогреваемых камерах (для получения малозольного кокса)
  2. обогреваемых кубах (для получения электродного и специальных видов кокса)
  3. коксование в «кипящем слое» порошкообразного кокса (так называемый «термоконтактный крекинг»)

Наиболее часто в современной нефтепереработке и нефтехимии применяется технология замедленного коксования.

Процесс замедленного коксования представляет собой процесс термического крекинга для переработки тяжелых фракций нефти в более легкие газообразные и жидкие продукты и твердый (сырой) кокс.

Сырье и продукты

Сырье коксования может представлять собой смесь одного или нескольких видов сырья, таких как вакуумные остатки, атмосферные остатки или смолы. Эта смесь поступает на установку через резервуарный парк или напрямую с других технологических установок.

Установка замедленного коксования предназначена для производства следующей продукции:

  • отходящие газы коксования,
  • пропан-пропилен,
  • бутан-бутилен,
  • нафта коксования,
  • легкий газойль коксования (ЛГК),
  • тяжелый газойль коксования (ТГК),
  • топливный кокс.

Нефтяной кокс привлекает внимание специалистов как перспективное технологическое топливо в производстве вяжущих материалов — цемента, извести и гипса.

Кокс широко используется в качестве исходного сырья в производстве электродов для дуговых электропечей. Его применение в указанном качестве и в других производствах ограничивается содержанием серы.

Нефтяной кокс используется в качестве топлива при сжигании которого на ТЭЦ вырабатывается электроэнергия.

Потребление нефтяного кокса в промышленности

Технологическая схема

Установка состоит из следующих секций:

  • буферная емкость сырья и предварительный подогрев сырья,
  • коксование
  • секция первичного фракционирования
  • секция разделения газов
  • секция аминовой очистки
  • пропарка/продувка коксовой камеры
  • раскоксовывание
  • система выгрузки кокса.

Принцип работы

Блок предварительного подогрева

Свежее сырье совместно с рециркулирующими дистиллятами направляется через линию теплообменника предварительного нагрева подачи, чтобы максимизировать рекуперацию тепла из потоков циркулирующих орошений (ЦО) и продуктовых газойлей. Через цепь теплообменников предварительного нагрева сырье обычно нагревается до 280-300 °С. Точная температура на выходе из теплообменника оценивается с помощью пинч-анализа для оптимального проектирования схемы теплообмена. Предварительно нагретый вакуумный остаток направляется в нижнюю часть фракционирующей колонны, которая выполняет роль буферной емкости и обеспечивает равномерную подачу для печных насосов.

Печь

Печь коксования работает на топливном газе. Каждая печь оборудована независимой системой подогрева воздуха (включающей в себя вытяжной вентилятор, нагнетательные вентиляторы, подогреватель пара и подогреватель воздуха) и дымовой трубой, установленной в верхней части каждой печи.

Поток рециркуляции дистиллята способствует испарению в процессе коксования. В печи повышенное испарение также увеличивает скорость в трубах, что, в свою очередь, уменьшает общее время пребывания сырья внутри печи. Цель состоит в том, чтобы уменьшить общее время в печи выше этой температуры, чтобы ограничить отложения кокса внутри труб, тем самым увеличивая длину межремонтного пробега.

Сырье выходит из печи с приблизительной температурой 500 °C и давлением 3,5 кг/см2 (изб.)

Коксовые камеры

Нагретое в печи сырье поступает в коксовые камеры, где происходит его крекинг с образованием кокса и продуктов крекинга. В результате протекания реакций крекинга, циклизации, ароматизации, дегидрирования, поликонденсации и уплотнения образуется сплошной слой кокса. Заполнение каждой коксовой камеры коксом до безопасного эксплуатационного уровня производится в течение 18 часов.

Продукты крекинга выходят из верхней части коксовых камер в виде потока пара с приблизительной температурой 449 °C и давлением 1,05 кг/см 2 (изб.).

Рабочее давление в коксовой камере поддерживается как можно более низким для снижения количества образующегося кокса и увеличения выхода дистиллята. Горячий поток паров из коксовой камеры немедленно охлаждается до температуры 429 °C или менее при теплообмене с ТГК для прекращения реакций крекинга и полимеризации, вследствие чего коксообразование в линии паров с верха коксовой камеры к фракционирующей колонне установки коксования сводится к минимуму.

Фракционирование

Во фракционирующей колонне установки коксования происходит разделение потока паров из коксовой камеры на:

  • жирный газ коксования
  • нафту коксования
  • легкий газойль коксования
  • тяжелый газойль коксования
  • внутренний рецикловый продукт

Колонна разделена на две основные секции тарелкой для отвода ТГК. В верхней части установлены ректификационные тарелки клапанного типа; в нижней части размещены два уровня распылительных распределителей для повышения качества ТГК. Охлажденные пары из коксовой камеры поступают вверх через распределительное устройство паров и через зону распыления, при этом пары охлаждаются при соприкосновении со стекающим вниз жидким ТГК, который распыляется в верхней части зоны распыления.

Тяжелая рецикловая жидкость образуется в нижней части распылительной камеры. После охлаждения этот поток используется в качестве орошения для поддержания температур в кубе колонны ниже температур начала коксования.

Пары из верхней части фракционирующей колонны установки коксования охлаждаются и конденсируются в воздушном конденсаторе и концевом холодильнике верхнего продукта фракционирующей колонны. Часть жидких углеводородов из приемника подается на верхнюю тарелку в качестве флегмы. Сконденсированная кислая вода перекачивается насосом на границу технологической установки.

Читайте также  Двухфакторная производственная функция Кобба Дугласа

Блок разделения газов

Несконденсированные пары из приемника верхнего продукта направляются на прием газового компрессора и далее на блок разделения.

Секция разделения паров предназначена для разделения паров и жидких верхних продуктов, поступающих из фракционирующей колонны, на осушенный газ коксования, пропан-пропилен, бутан-бутилен и нафту коксования.

После компримирования жирного газа он вместе с нестабильной нафтой поступает на блок абсорбции, где из него удаляются легкие углеводороды С12.

Смесь нафты и СУГ поступает на блок стабилизации, где из нафты выделяются углеводороды С34.

Аминовая очистка

Углеводороды С12 и С34 отдельными потоками отправляются на блок аминовой очистки, где из них в результате процесса абсорбции с помощью МДЭА удаляется H2S.

Очищенный топливный газ С12 частично отправляется в топливную сеть предприятия, а также используется в качестве топлива для печи коксования.

Очищенный СУГ С34 направляется на дальнейшее фракционирование на пропан-пропиленовую и бутан-бутиленовую фракции.

Пропарка/продувка коксовой камеры

Коксование представляет собой полунепрерывный процесс с 18-часовым циклом коксования в коксовых камерах при эксплуатации. Каждая камера должна быть включена в процесс в течение 18 часов для заполнения и исключена из процесса на 18 часов для декоксования. Таким образом, суммарная продолжительность цикла между последовательными подачами нефтепродуктов в камеру составляет 36 часов.

По завершении цикла заполнения одной камеры поток из печи коксования переводится в другую (пустую) камеру посредством входного клапана переключения. Затем в нижнюю часть заполненной коксом камеры в течение 30 минут подается пар, а летучие легкие углеводороды отводятся во фракционирующую колонну установки коксования.

На протяжении следующих 60 минут расход пара увеличивается, а полученные пары (в основном водяной пар) направляются в нижнюю часть колонны продувки.

Раскоксовывание

Кокс удаляется их коксовых камер путем гидравлического декоксования за два этапа. Сначала в слое кокса проделывают отверстие диаметром около 915 мм. На втором этапе кокс разрезается на слои по мере опускания инструмента оператором. Гидравлические режущие инструменты монтируются на конце полой ударной штанги, которая подвешена на поворотном соединении. Ударная штанга вращается посредством электродвигателя. Лебедка на площадке поднимает и опускает ударную штангу в пределах конструкции вышки, построенной над коксовыми камерами.

Вода для резки подается насосом для резки кокса под давлением приблизительно 270 кг/см 2 (изб.). Чтобы избежать частых пусков и остановов насоса, применяется специальный гидравлический байпасный регулирующий клапан.

После удаления кокса обеспечивается повторная установка крышки на неработающую камеру, продувка паром для удаления воздуха и опрессовка паром. После этого в сборник подаются пары из работающей коксовой камеры, которая заполняется в данный момент.

Парожидкостная смесь, образовавшаяся в результате конденсации пара в неработающем сборнике, поступает в колонну продувки. После достаточного прогрева коксовой камеры она готова к работе в целях ее заполнения.

Система выгрузки кокса

Система выгрузки кокса (СВК) предназначена для переработки кокса, образовавшегося в установке замедленного коксования (УЗК) и является надежной и безопасной системой с отсутствием выбросов.

СВК способна дробить кокс и затем направлять его в виде суспензии (смеси частиц раздробленного кокса с водой) из коксовых камер в бункер обезвоживания и затем на участок хранения. Система обеспечивает высокоэффективное отделение кокса от воды и производит чистую воду для повторного использования в процессе декоксования.

СВК состоит из следующих технологических стадий:

  • охлаждение сточной воды из коксовых камер
  • дробление кокса и транспортировка суспензии
  • обезвоживание
  • выгрузка сухого кокса.

Достоинства и недостатки

Недостатки

  • высокая вероятность коксования змеевиков печи и куба фракционирующей колонны
  • сложность очистки сточных вод после гидравлической резки кокса водой
  • возможные проблемы при выгрузке и транспортировке кокса, связанные с большим количеством движущихся механизмов
  • несоответствие кокса заявленным требованиям при смене качества нефтяного сырья, неверного выполнения технологических стадий
  • контакт персонала с сыпучими/пыльными материалами, выбросы в атмосферу.

Достоинства

  • низкие капиталовложения по сравнению с величиной достижения глубины переработки (90-95%) и выхода светлых нефтепродуктов (70-75%)
  • широкая степень изучения и внедрения процесса коксования в мировой нефтепереработке
  • относительная простота технологического процесса
  • отсутствие катализатора для проведения процесса

Материальный баланс

Один из вариантов материального баланса установки замедленного коксования.

Сырье %
Гудрон 45
Остатки масляного производства 13
Остатки висбрекинга 42
ИТОГО 100
Получено
Сухой газ 4,1
H2S+NH3 0,9
ППФ 0,9
ББФ 1,5
Нафта (30-150°C) 10,0
Легкий газойль коксования 37,5
Тяжелый газойль коксования 18,6
Кокс 26,5
ИТОГО 100

Существующие установки

Наиболее крупными установками замедленного коксования на НПЗ России по данным на 2017 год являются установки на «Газпромнефть-ОНПЗ» (Омск) и ПАО «ТАНЕКО» (Нижнекамск). В период 2017-2020 были запущены УЗК на «ЛУКОЙЛ-Нижегороднефтеоргсинтез», Антипинском НПЗ, Уфимском НПЗ.

Кокс: виды и применение

С развитием технического прогресса возможности классических видов топлива перестали отвечать требованиям мануфактур. А поиски новых решений привели к тому, что уже в середине 18 века промышленники научились перерабатывать породы угля с высоким содержанием углерода и изготавливать качественно новый продукт повышенной прочности – кокс.

Кокс представляет собой твердый вид топлива, получаемый при нагреве природного горючего до высоких температур. Современное оборудование позволяет производить несколько видов кокса, используя разные исходные материалы и режимы горения.

Виды кокса

Сегодня необходимые для образования кокса температуры без труда нагнетаются в специализированных печах. Это дает возможность изготавливать кокс как из угля, так и из нефтепродуктов. В зависимости от состава и качества базового сырья, а также от техники переработки, можно получить несколько разновидностей продукта:

  • Нефтяной. Имеет низкую зольность до 0, 8 %. Нефтяную разновидность получают посредством пиролиза и крекинга жидких отходов нефтеперерабатывающей промышленности.
  • Электродный пековый. По техническим характеристикам достаточно близок нефтяному коксу. Зольность данной разновидности не превышает 0,3 %. Электродный пековый кокс — это результат коксования каменноугольного пека в условиях высокого температурного режима.
  • Каменноугольный. Одна из самых распространенных разновидностей. В зависимости от качества (химического состава) исходного сырья и принципа коксования каменного угля выделяют доменный, литейный, бытовой и другие узкоспециальные виды кокса.

В целом каменноугольный вид можно охарактеризовать, как твердое, пористое вещество серого цвета, получаемое в процессе сухой перегонки каменного угля. Однако в зависимости от разновидности и назначения, характеристики будут меняться.

По качеству получаемого сырья доменный кокс считается лучшим вариантом из всех разновидностей каменноугольного. Содержание серы в этом продукте составляет 2 %. Доменный или кузнечный кокс правильной консистенции имеет куски размером 25-80 мм. Допускается присутствие примеси из гранул меньшей фракции, но их количественное соотношение не должно превышать 3% от общей массы вещества.

Литейный кокс отличается от доменного преобладанием более крупных кусков: от 60 мм. А также меньшим содержанием серы: до 1 %.

Бытовой кокс наименее прочный из всех разновидностей, что не мешает ему пользоваться постоянным спросом. Больше чем бытовой, востребован мелкий кокс или орешек. В промышленных масштабах используют кокс с фракцией 10-25 мм.

Особенности производства

Производство нефтяного кокса российскими промышленниками стало осваиваться совсем недавно. Но перспективы этой отрасли пророчат большие. Нефтяной кокс изготавливают из вторсырья. Что делает его производство более выгодным с экономической точки зрения и позволяет рационально использовать природные ресурсы.

В зависимости от используемого сырья, этот вид будет различаться по содержанию серы в готовом продукте: малосернистые (содержат до 1% серы), сернистые и высокосернистые (свыше 2%).

Самой популярной разновидностью считается каменноугольный кокс. Ежегодно в мире производится порядка 400 миллионов тонн этого вещества (из общего количества производимого кокса 600 миллионов тонн).

Качество каменноугольного кокса зависит от состава пласта, из которого был добыт уголь. Например, наличие газового угля приведет к получению кусков более мелкого размера, снизит прочность кокса и повысит пористость.

Повысить прочность можно увеличив температуру плавления. А медленный разогрев и длительное время прокаливания коксуемой смеси позволяют получить более крупную фракцию.

Где используется

Главным заказчиком кокса на сегодняшний день остается металлургическая промышленность. На нужды этой отрасли уходит порядка 80 % всего вырабатываемого кокса. Литейная промышленность забирает на себя еще 10 % от общей массы производимого продукта. Около 6 % потребляет химическая отрасль. Оставшиеся проценты распределяются на бытовые, строительные и другие нужды.

Черная металлургия работает с доменным и литейным коксом. Но возможно использование и более мелких фракций. В цветной металлургии преобладает использование видов с более мелкими кусками: мелочь до 10 мм, орешек.

В строительстве пользуется спросом нефтяной, электродный пековый, мелочь, орешек. А также литейный в качестве бездымного топлива, для сушки помещений.

Используют кокс и для очистки воды. Литейная разновидность мелкой фракции позволяет очистить воду от маслянистых примесей.

В более обобщенном виде распределение кокса по областям выглядит так:

  • крупная фракция – черная и цветная металлургия,
  • средняя – для ферросплавов,
  • мелкая — топливо.

Применение

Нефтяной и электродный пековый применяются при производстве сварочных электродов, изготовлении алюминия, огнеупорных материалов и др. В тяжелой промышленности, и в частности машиностроении применяют литейный кокс, отличающийся малым выделением летучего вещества и отсутствием электропроводимости. С его помощью производят стальные сплавы. Кокс мелкой фракции незаменим для изготовления ферросплавов.

Доменный кокс используют при производстве чугуна, с его помощью восстанавливают железную руду и разрыхляют шихтовые материалы.

Химическая промышленность активно применяет кокс при изготовлении таких элементов, как фосфор, кремний, сернистый натрий и другие. Пищевая промышленность обращается к использованию кокса для выработки сахарного песка.

Кокс востребован во многих отраслях промышленности, каждая из которых специализируется на применении продукта определенного «сорта», обладающего особенными техническими и химическими характеристиками. Однако определенная универсальность при классификации кокса все же присутствует. На любом производстве предпочитают работать с сырьем высокой прочности, малой зольности, минимальным содержанием серы и мелких фракций.

Свойства

Кокс представляет собой твердый материал с пористой структурой. Цвет может варьировать от серого до черного.

Основными показателями качества кокса считаются:

  • массовая доля серы;
  • зольность;
  • влага (не более 3%);
  • выделение летучего вещества;
  • размер гранул; прочность.

Любая разновидность кокса обладает следующими свойствами:

  1. Физические. Газопроницаемость и прочность. Устойчивость к механическим повреждениям проверяется в специальных барабанах.
  2. Физико-химические. Главным здесь является показатель скорости окисления (горючесть) и скорости взаимодействия вещества с оксидом углерода (так называемая реакционная способность). Также к этой группе свойств относят электропроводность. У качественного кокса этот показатель практически отсутствует.
  3. Химические. Наличие различных химических элементов в составе готового продукта.

Свойства во многом зависят от соблюдения технологии коксования и состава химических элементов в исходном сырье.

В целом, изготовление кокса довольно трудоемкий процесс, требующий специального оборудования, специализированных знаний и занимающий довольно много времени. Но, в итоге, затраченные ресурсы окупает широкий спектр применения, экологическая, экономическая и рациональная составляющая использования это продукта.

Кокс и коксование

  • Возможно, вынося на всеобщее обозрение статьи и обзоры, я нарушаю чьи-то права.
  • Данные статьи — статьи моих своебразных «конкурентов», работающих в той же области, что и я. Вот так и выражается единство и борьба противоположностей — делаем общее дело, но каждый желает быть первым.
  • Авторов большинства статей я никогда в глаза не видел, поэтому не испытываю к ним ни личной ненависти, ни приязни, при этом уважаю каждого и ценю их мнение.
  • Размещение данных статей на моем сайти — не есть моя личная прихоть, а производственная (т.е. учебная) необходимость.
  • Я постарался максимально полно указать все источники. К сожалению, все самое интересное имеется в виде «выдранных» откуда-то ксерокопий. Имена авторов указаны в любом случае.
  • Надеюсь » возмущенные» авторы учтут указанные выше соображения, как братья славяне, отличающиеся человеколюбием. Заранее спасибо.
Читайте также  Обычаи и традиции русского народа

Кошкарев Ян Михайлович

Электронная библиотека

7. Производство металлургического кокса и восстановление продуктов коксования

J. L. Sundholm, старший инженер-разработчик, LTV Steel Company
H. S. Valia, ученый, Ispat Inland, Inc.
F. J. Kiessling, директорr, маркетинг по коксу, Indianapolis Coke
J. Richardson, менеджер, кокс и продукты коксования, ICF Kaiser Engineers, Inc.
W. E. Buss, вице-президент и генеральный менеджер, Thyssen Still Otto Technical Services
R. Worberg, Thyssen Still Otto Anlagentechnik GmbH
U. Schwarz, Thyssen Still Otto Anlagentechnik GmbH
H. Baer, European Cokemaking Technology Center
A. Calderon, президент, Calderon Energy Company
R. G. DiNitto, рабочая группа по операциям и маркетингу, Antaeus Energy

Copyright © 1999, The AISE Steel Foundation, Pittsburgh, PA. All rights reserved.

Углерод как восстановитель

Несмотря на то, что оксиды железа можно восстановить с получением металлического железа многими агентами, углерод (непосредственно или косвенно) считается восстанавливающим реагентом, который лучше всего удовлетворяет условиям экономичного производства железа. Углерод подходящей реактивности и физических параметров некогда производился из древесины пиролизом с получением лесного древесного угля; но для действия современных больших печей углерод, требуемый для плавления железа, получается термической деструкцией отборных коксующихся углей при температурах от 900°C к 1095°C (1650°F до 2000°F).

Химический эффект коксования

Уголь состоит, главным образом, из остатков растительного вещества, которое было частично разложено из-за наличия влаги и отсутствия воздуха, и подвержено изменениям температуры и геологического давления. Это — сложная смесь органических соединений, главные элементы которых углерод и водород со значительно уступающими им по количеству кислородом, азотом и серой. Уголь также содержит несколько негорючих компонентов, которые превращаются в золу. Зола состоит, прежде всего, из неорганических смесей, которые «встроились» в коксующую массу в процессе коксования.

Химические смеси, составляющие угли, подобно большинству из них в животном и растительном мире, нестойки под воздействием высоких температур. При максимальном нагреве без доступа воздуха сложная органическая структура молекул разрушается, при этом образуются газы, жидкие масла и простые органические компоненты меньшей молекулярной массы, а также относительно неизменный углеродный остаток (кокс).

Кокс, таким образом, остаток термической деструкции угля. Структурно он представляет собой клеточную пористую субстанцию, которая разнородна как в физических, так и в химических свойствах. Физические свойства металлургического кокса, также как и его состав, зависят в значительной степени от использованного угля и температуры коксования. Не все угли формируют кокс, и не все коксующиеся угли позволят получить кокс с характеристиками, подходящими для металлургических целей.

Одни угли могут производить приемлемый кокс без добавки присадок других углей, в то время как другие — годны к употреблению только как компоненты в усредненной смеси. Тип и метод воздействия средств коксования также оказывают глубокое влияние на качество и выход кокса.

Виды кокса

Есть три главных вида кокса, классифицированного согласно методам, которыми они производятся: низко-, средне- и высокотемпературный кокс. Кокс, используемый для металлургических целей, должен быть нагрет до высших температур (между 900°C и 1095°C) (1650°F и 2000°F), чтобы продукт имел удовлетворительные физические свойства. Даже из хорошо коксующегося угля продукт, полученный низкотемпературной обработкой между 480°C и 760°C (900°F и 1400°F), неприемлем для хорошего действия доменной печи.

Важные свойства металлургического кокса

Вероятно самое главное физическое свойство металлургического кокса — его прочность, достаточная, чтобы выдержать дробление и истирание в течение всей обработки и использования в печи. В Соединенных Штатах стандартные тесты Американского Общества по Испытанию материалов, используемые для оценки этих свойств, — определение индекса стабильности при дроблении и индекс твердости при истирании. Оба испытания заключаются в загрузке кокса определенного размера в стандартный барабан, вращающийся в течение определенного времени в определенном режиме. Индекс стабильности и индекс твердости — проценты остатка кокса на сите с отверстиями 1 дюйм и 1/4 дюйма соответственно после вращения в барабане.

В современной доменной практике наблюдается тенденция в сторону использования мелкодробленных железосодержащих материалов контролируемого размера как, например, агломерат или таблетки, поэтому размер кокса, используемого в шихте, более важен, чем раньше, когда использовалась только неподготовленная руда. Размер кокса, производимого в коксовых печах, зависит от вида угля, температурного режима, ширины камер и массовой плотности коксующейся загрузки; большие количества малогазовых углей, более широкие печи и большая массовая плотность коксующейся загрузки имеют тенденцию к образованию более крупного кокса, в то время как ускорение температурного режима приводит к образованию более мелкого кокса. Поскольку предпочтителен общепринятый размер, дробя и просеивая кокс, добиваются того, чтобы контролируемый параметр имел желаемое значение. Большинство операторов доменного производства предпочитают кокс размером между 18.5 и 76 мм (3/4 дюйма и 3 дюйма) как оптимальный для работы печи. Другие физические свойства кокса как, например, пористость, плотность и горючесть, контролируются только в небольшом промежутке, а их важность в действии на функционирование доменной печи не была установлена однозначно.

Методы производства металлургического кокса

Есть два испытанных процесса производства металлургического кокса, известных как ульевый метод и метод с получением побочных продуктов. При ульевом способе воздух подается в коксовую камеру в контролируемых количествах с целью сжигания там газовых продуктов деструкции угля и генерирования тепла для дальнейшего нагревания. В методе побочного продукта камеры коксования защищены от попадания внутрь воздуха, а необходимое для процесса тепло получается от сгорания извне части из газа, выделяющегося при коксовании (или, в некоторых случаях, чистого доменного газа либо смеси коксового газа и доменного). В современных коксовых печах, организованных соответствующим образом, все продукты, выделяющиеся в процессе коксования, восстанавливаются как газ и химические реагенты, и, если в качестве топлива используется только коксовый газ, около 40% из получаемого газа возвращается на обогрев коксовых камер. В то время, как ульевой способ был лидирующим методом производства кокса вплоть до 1918, в настоящий момент процесс побочного продукта в значительной степени заменил его. Существует разница температур коксования в этих двух процессах — в методе побочного продукта температура ниже, чем в ульевом методе. Кокс при ульевом способе обычно больше, однако, разнороден по размеру. Вообще, должным образом дожженный ульевой кокс и кокс при способе побочного продукта имеют серебристый цвет. Модификация технологии улья, известная как печи без улавливания химпродуктов, приобретает актуальность.

Другие способы получения металлургического кокса известны как непрерывные процессы; было предложено много изменений, но ни одно из них не было осуществлено в коммерческих масштабах. В одном из таких методов размельченный кокс или некоксующийся уголь сушится, частично окисляется паром или воздухом и подается в печь. Получение кокса происходит на второй стадии при более высоких температурах. Используя связующее на основе смолы, выделяющейся при коксовании, уголь брекетируется. “Зеленые” брикеты выдерживаются в низких температурах, коксуются при высоких температурах, и окончательно охлаждаются в инертной атмосфере, чтобы получался металлургический кокс постоянного состава. Этот вид кокса часто определяют как формованный. Брикетирование будет обсуждаться позже снова в этой главе.

Продукты коксования

Реакции, протекающие в процессе производства металлургического кокса, сложны. Процесс можно рассматривать как трехстадийный: (а) первоначальная деструкция угля при температурах разложения ниже 700°C (1296°F) с выделением воды, оксидов углерода, скроводорода, гидроароматических смесей, парафинов, олефина, фенолов, и азотсодержащих смесей; (b) вторичные термические реакции внутри выделившихся на первой стадии веществ, так как они проходят через горячий кокс, вдоль горячих стен духовок и чрезвычайно горячее подсводовое пространство коксовой камеры, и включают как синтез, так и деструкцию. Большое выделение водорода и образование ароматических углеводородов и метана происходят в промежутке выше 700°C (1296°F). Разложение сложных содержащих азот аммиачных смесей, водородного цианида, оснований пиридина и азота; (с) усиленное выделение водорода из твердого остатка, получаемого в коксовой печи.

В процессе коксования около 20-30% начальной массы угольной загрузки удаляется из камеры коксования в виде газо-паровой смеси через газопровод и поступает на отделение улавливания для выделения химических продуктов. Для каждого отдельного угля экпериментально определяется соотношение выделяющихся продуктов и твердого коксового остатка; оно зависит от типа угля, температуры и способа коксования.

Коксовый газ содержит фиксированные газы, классифицированные так, потому что это — газы под давлением 760 мм (29.92 дюймов) и 15.5°C (60°F). Ими являются: водород, H ; метан, CH ; этан, C H ; углерод-2-4-2-6-моноксид, СО; углекислота, СО2 ; горючие ненасыщенные углеводороды, как например этилен, C2H4 ; и ацетилен, CH3 . Другими фиксированными присутствующими газами являются: сероводород, H2S; аммиак, NH ; кислород и азот, N.

Другие вещества в сырых газах и парах, выходящих из камер коксования, которые являются жидкостями при обычных температурах и давлении, обсуждаются ниже.

Аммиак

Прежде всего, это вода, сконденсированная из прямого коксового газа, которая является водным электролитом солей аммония в двух состояниях — свободном и связанном. Свободные соли — те, которые разлагаются при кипении с выделением аммиака. Связанные соли — те, которые требуют кипячения в щелочи (например, известь), чтобы освободить аммиак.

Смола

Смола — органическое вещество, которое отделяется конденсацией из газа в магистралях газосборника. Это — сажа, клейкая жидкость, немного тяжелее воды. Из смолы можно выделить следующие вещества и фракции: пиридин, кислоты смол, нафталин, масла креозота и фусы.

Легкие масла

Легкие масла — чистая, желто-коричневая жидкость, несколько легче воды. Она содержит преременные количества продуктов горючего газа с точками кипения от от 40°C к 200°C, а бензол, толуол, ксилол и растворенная нефть отделяются от главной продукции.

Восстановление продуктов коксования

Первый шаг при восстановлени продуктов коксования — восстановление основных сырьевых материалов (прямой коксовый газ, раствор аммиака, смола и легкие масла) как первая операция в соответствии с коммерческой практикой. Вторичные действия состоят из обработки этой первоначальной продукции для разделения ее на компоненты.

Copyright © 1999, The AISE Steel Foundation, Pittsburgh, PA. All rights reserved.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: