Инвариантные свойства ортогонального проецирования - OXFORDST.RU

Инвариантные свойства ортогонального проецирования

Ортогональное проецирование. Свойства ортогонального проецирования

Ортогональное (прямоугольное) проецирование является частным случаем параллельного проецирования, когда направление проецирования перпендикулярно к плоскости проекций (s^П1). В этом случае проекции геометрических фигур называются ортогональными.

Ортогональному проецированию присущи все свойства параллельного проецирования, а также свойства, присущие только ортогональному проецированию.

Первое свойство. В общем случае ортогональная проекция отрезка всегда меньше его натуральной длины.

Если провести А*В || А1В1, то ÐАА*В = 90°. Из прямоугольного треугольника следует, что АВ — гипотенуза, А*В — катет, а гипотенуза всегда больше катета (А*В = АВ ´ Соs a),

Рассмотрим частные случаи:

Если a = 0 Þ |А1В1 | = |АВ |, т.е. проекция равна самому отрезку.

Если a =90 ° Þ А1 = В1, т.е. проекция отрезка — точка.

Второе свойство: теорема о проецировании прямого угла

Если одна сторона прямого угла параллельна какой-нибудь плоскости проекций, а вторая сторона не перпендикулярна ей, то на эту плоскость проекций прямой угол проецируется без искажения.

Дано: ÐАВС = 90 °, ВС || П1,

плоскость Ф = АВ Ç ВВ1

плоскость S = ВС Ç ВВ1

Третье свойство: ортогональная проекция окружности в общем случае есть эллипс.

Заключим окружность в плоскость S, S Ù П1 = a, если 0 А , проходящего через А1. Таким образом, рассмотренные однокартинные чертежи не обладают свойством обратимости.

Для получения обратимых однокартинных чертежей их дополняют необходимыми данными. Существуют различные способы такого дополнения. Например, чертежи с числовыми отметками.

Способ заключается в том, что наряду с проекцией точки А1 задаётся высота точки, т.е. её расстояние от плоскости проекций. Задают, также, масштаб. Такой способ используется в строительстве, архитектуре, геодезии и т. д. Однако, он не является универсальным для создания чертежей сложных пространственных форм.

В 1798 году французский геометр-инженер Гаспар Монж обобщил накопленные к этому времени теоретические знания и опыт и впервые дал научное обоснование общего метода построения изображений, предложив рассматривать плоский чертёж, состоящий из двух проекций, как результат совмещения двух взаимно перпендикулярных плоскостей проекций. Отсюда ведёт начало принцип построения чертежей, которым мы пользуемся и поныне.

Поставим перед собой задачу построить проекции отрезка [AB] на две взаимно перпендикулярные плоскости проекций П1 и П2.

Пространственная модель.

П1 — горизонтальная плоскость проекций;

П2 — фронтальная плоскость проекций.

А1В1 — горизонтальная проекция отрезка;

А2В2 — фронтальная проекция отрезка.

х12 — линия пересечения плоскостей проекций.

Однако, в таком виде чертёж неудобно читать. Поэтому Гаспар Монж предложил совместить эти плоскости проекций, причём, П принимается за плоскость чертежа, а П — поворачивается до совмещения с П2. Такой чертёж называется комплексным чертежом.

Плоская модель.

Рассмотрим совмещение плоскостей проекций со всем их содержимым на плоском чертеже. Совокупность проекций множества точек пространства на П1 называется горизонтальным полем проекций, а на П2 — фронтальным полем проекций.

х12 — ось проекций, база отсчёта.

А1А2, В1В2 Þ линия связи — это прямая, соединяющая две проекции точки на комплексном чертеже. Линия связи перпендикулярна оси проекций.

Свойства двухкартинного комплексного чертежа Монжа:

1. Две проекции точки всегда лежат на одной линии связи установленного направления.

2. Все линии связи одного установленного направления параллельны между собой.

Безосный чертёж.

Если совмещённые плоскости П1 и П2 перемещать параллельно самим себе на произвольные расстояния ( см. положение осей х12, х12 1 , х12 11 на рис. 1-17), то будут меняться расстояния от фигуры до плоскостей проекций.

Однако, сами проекции фигуры (в данном случае — отрезка АВ) при параллельном перемещении плоскостей проекций не меняются (согласно 7 свойству параллельного проецирования).

Из рис. 1-17 видно. что при любом положении оси х, величины D Z— разность расстояний от концов отрезка до П1, и Dy -разность расстояний от концов отрезка до П2, остаются неизменными. Поэтому нет необходимости указывать положение оси х12 на комплексном чертеже и тем самым предопределять положение плоскостей проекций П1 и П2 в пространстве.

Это обстоятельство имеет место в чертежах, применяющихся в технике, и такой чертёж называется безосным.

Проиллюстрируем вышесказанное на конкретном примере.

Задача: Составить чертёж для изготовления стола (рис. 1-18).

1.Построить три проекции стола, учитывая свойства эпюра Монжа.

2. Что не хватает для выполнения по чертежу данного изделия?

3. Да, конечно, размеров.

Теперь, когда есть три изображения изделия и его размеры, имеют ли значение для изготовления изделия расстояния от изделия до плоскостей проекций, т. е. привязка к осям x, y и z (размеры 1500, 2000, 2000 на чертеже).

По данному чертежу изделие создается, а на каком расстоянии его установить от стен (П23) — это уже другая задача.

Безосный чертеж позволяет, не привязываясь к осям, располагать изображения в удобном для исполнителя положении, но с соблюдением проекционной связи, т.е. построение чертежа происходит по законам, установленным Гаспаром Монжем

Инвариантные свойства ортогонального проецирования

Одно из основных геометрических понятий — отображение множеств . В начертательной геометрии каждой точке трехмерного пространства ставится в соответствие определенная точка двумерного пространства – плоскости. Геометрическими элементами отображения служат точки, линии, поверхности пространства. Геометрический объект, рассматриваемый как точечное множество отображается на плоскость по закону проецирования. Результатом такого отображения является изображение объекта.

В основу любого изображение положена операция проецирования, которая заключается в следующем. В пространстве выбирают произвольную точку S (рис. 1 ) в качестве центра проецирования и плоскость П i , не проходящая через точку S , в качестве плоскости проекций ( картинной плоскости). Чтобы спроецировать точку А на плоскость П i , через центр проецирования S проводят луч S А до его пересечения с плоскостью П i в точке А i . Точку А i принято называть центральной проекцией точки А , а луч S А — проецирующим лучом .

Описанные построения выражают суть операции, называемой центральным проецированием точек пространства на плоскость.

В евклидовом пространстве существуют точки, которые не имеют центральных проекций, и наоборот в плоскости Пi есть точки, которые в пространстве не имеют оригиналов (точки D и F).

Точка F прямой m принадлежит плоскости , , проходящей через центр проецирования S и расположенной параллельно плоскости проекций, таким образом проецирующий луч SF параллелен плоскости проекций, а точка F, как и все точки лежащие в плоскости не имеют центральных проекций на Пi.

Точка Di проекции прямой mi не имеет оригинала на прямой m, так как проецирующий луч SDi параллелен прямой.

Для исключения подобных случаев евклидово пространство расширяют введением несобственных (бесконечно удаленных) точек. Такое пространство называется расширенным евклидовым пространством.

Проецирующие лучи, проведенные через все точки кривой n , образуют проецирующую коническую поверхность N (рис.2). Проекция криволинейной фигуры, таким образом, представляет собой линию пересечения проецирующей поверхности N и плоскости проекций П i .

К оническую поверхность К образуют лучи и при проецировании трехмерной фигуры (рис. 3). Линию K i принято называть в этом случая очерковой или очерком данной фигуры .

Центральное проецирование есть наиболее общий случай проецирования геометрических объектов на плоскости.

Основными и неизменными его свойствами (инвариантами) являются следующие:

1) проекция точки – точка;

2) проекция прямой – прямая;

3) если точка принадлежит прямой, то проекция этой точки принадлежит проекции прямой.

По принципу центрального проецирования работают фотоаппараты и кинокамеры. Упрощенная схема работы человеческого глаза близка к этому виду проецирования: роль центра проецирования выполняет оптический центр хрусталика, роль проецирующих прямых – лучи света; плоскостью проекций служит сетчатка глаза. Поэтому изображения, построенные по принципу центрального проецирования, наиболее наглядны и их широко используют в своей работе художники, архитекторы, дизайнеры и многие другие специалисты.

Читайте также  Индий - Тезка страны чудес

Частный случай центрального проецирования – параллельное проецирование , когда центр проецирования удален в бесконечность, при этом проецирующие лучи можно рассматривать как параллельные проецирующие прямые. Положение проецирующих прямых относительно плоскости проекций определяется направлением проецирования S (рис.4). В этом случае полученное изображение называют параллельной проекцией объекта.

При параллельном проецировании сохраняются свойства центрального и добавляются следующие:

проекции параллельных прямых параллельны между собой;

отношение отрезков прямой равно отношению их проекций;

отношение отрезков двух параллельных прямых равно отношению их проекций.

Прямоугольное (ортогональное) проецирование является частным случаем параллельного.

Проекция объекта, полученная с использование этого метода, называется ортогональной .

Ортогональному проецированию присущи все свойства параллельного и центрального проецирования и кроме того, справедлива теорема о проецировании прямого угла: если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в прямой угол .

К проекционным изображениям в начертательной геометрии предъявляются следующие основные требования:

1. Обратимость – восстановление оригинала по его проекционным изображениям (чертежу) – возможность определять форму и размеры объекта, его положение и связь с окружающей средой.

2. Наглядность – чертеж должен создавать пространственное представление о форме предмета.

3. Точность – графические операции, выполненные на чертеже, должны давать достаточно точные результаты.

4. Простота – изображение должно быть простым по построению и допускать однозначное описание объекта в виде последовательности графических операций.

Инвариантные свойства ортогонального проецирования

Ортогональное (прямоугольное) проецирование и его свойства

Для обозначения точек будем использовать прописные буквы латинского алфавита или арабские цифры, для обозначения линий — строчные буквы латинского алфавита, для обозначения поверхностей (плоскостей) — прописные буквы греческого алфавита. Возможны и другие обозначения, которые будут введены в дальнейшем.

Возьмем в пространстве произвольную плоскость П1 (плоскость проекций). Пусть точка А расположена вне этой плоскости (рис. 1.1). Через точку А проведем прямую s, перпендикулярно плоскости проекций П1 (s ^ П1). Прямая s называется проецирующей прямой. Найдем точку A1 пересечения прямой s с плоскостью П1. Точка A1 называется ортогональной или прямоугольной проекцией точки A на плоскость П1. Процесс получения точки A1 называется ортогональным или прямоугольным проецированием точки A на плоскость П1.

Если точки расположены на одной проецирующей прямой, то ортогональные проекции этих точек совпадают (C1 = D1 на рис. 1.1). Такие точки называются конкурирующими.

Ортогональной проекцией фигуры называется множество ортогональных проекций всех точек этой фигуры. На рис. 1.1 ортогональной проекцией кривой m является кривая m1. Для получения m1 необходимо построить проекцию каждой точки линии m. Прямые, проецирующие точки кривой на плоскость, образуют проецирующую поверхность D . На рис. 1.1 показано только несколько таких проецирующих прямых, принадлежащих поверхности D .

Рассмотрим основные свойства ортогонального проецирования.

1. Точка проецируется в точку (проекцией точки является точка). Если точка принадлежит плоскости проекций, то точка и ее проекция совпадают (точка проецируется сама в себя). Это следует из определения проецирования.

2. Прямая, в общем случае, проецируется в прямую. Прямая, перпендикулярная плоскости проекций, проецируется в точку.

Линия m1 (рис. 1.1) есть линия пересечения проецирующей поверхности D и плоскости проекций П1. Если вместо кривой m взять прямую, то поверхность D будет плоскостью, а линия m1, как линия пересечения двух плоскостей, будет прямой линией.

Таким образом, прямая линия не перпендикулярная плоскости проекций проецируется в прямую линию.

Для любой точки прямой, перпендикулярной плоскости проекций, сама эта прямая и является проецирующей прямой, поэтому проекции всех точек совпадут, т.е. прямая, в этом случае, проецируется в точку.

3. Если точка принадлежит прямой, то ее проекция принадлежит проекции прямой.

Проекцией прямой является множество проекций всех ее точек, в том числе и, упомянутой в этом свойстве, точки.

4. Пересекающиеся прямые, в общем случае, проецируются в пересекающиеся прямые.

Это легко доказать, если для точки пересечения прямых применить свойство 3. В частном случае, проекции пересекающихся прямых могут совпадать или одна из прямых может проецироваться в точку, принадлежащую проекции другой прямой.

5. Параллельные прямые, в общем случае, проецируются в параллельные прямые.

Проецирующая поверхность D (рис.1.1) для прямой будет плоскостью и называется проецирующей плоскостью. Проецирующие плоскости у параллельных прямых параллельны и пересекаются плоскостью проекций по параллельным прямым (проекциям). В частном случае, проекцией параллельных прямых могут быть две точки или совпавшие прямые.

6. Отрезок проецируется в отрезок. Отрезок, перпендикулярный плоскости проекций, проецируется в точку. Длина проекции отрезка равна длине отрезка, умноженной на косинус угла наклона отрезка к плоскости проекций (при проецировании на П1: ï A1B1 ï = ï AB ï cos a ).

Поскольку прямая проецируется в прямую, то и часть прямой (отрезок) проецируется в часть прямой (отрезок). На рис.1.2 отрезок AB проецируется в отрезок A1B1. Отрезок AB ï проведен параллельно отрезку A1B1 (AB ï // A1B1). Из прямоугольника A1AB ï B1 и прямоугольного треугольника ABB ï имеем ï A1B1 ï = ï AB ê ï = ï A B ï cos a . Длина проекции отрезка меньше длины отрезка ( a ¹ 0) или равна длине отрезка ( a = 0). Из этого свойства следует следующее свойство ортогонального проецирования.

7. Отрезок, параллельный плоскости проекций, проецируется на нее в параллельный и равный себе отрезок.

8. Отношение длин отрезков AB и CD, лежащих на параллельных прямых или на одной прямой, при проецировании не меняется.

Угол наклона отрезков, упомянутых в этом свойстве, к плоскости проекций одинаков, поэтому ï A1B1 ï : ï С1D1 ï = ï AB ï cos a : ï CD ï cos a = ï AB ï : ï CD ï .

9. Фигура, принадлежащая плоскости, параллельной плоскости проекций, проецируется на плоскость проекций в равную ей фигуру (в натуральную величину).

Любой отрезок проецируемой фигуры параллелен плоскости проекций ( a = 0) и проецируется в равный ему отрезок (длина проекции отрезка равна длине отрезка). Это значит, что и вся фигура проецируется в равную ей фигуру или натуральную величину.

10. Если две плоскости проекций параллельны, то проекции любой фигуры на эти плоскости равны.

Угол наклона любого отрезка фигуры к этим плоскостям проекций одинаков вследствие их параллельности. Поэтому отрезок, соединяющий две любые точки фигуры, будет проецироваться на эти плоскости в равные отрезки. Это значит, что любая фигура будет проецироваться на параллельные плоскости в равные фигуры.

11. Величина проекции угла определяется по формуле

Угол ВАС проецируется в угол В1А1С1 (рис. 1.3). Точки В и С – это точки пересечения сторон угла с плоскостью проекций, поэтому они проецируются сами в себя. Вывод формулы основан на использовании теоремы косинусов для стороны ВС в треугольниках АВС и А1В1С1.

При изучении свойств ортогонального проецирования рекомендуется выполнять рисунки типа рис.1.1 для каждого свойства и пытаться представить себе фигуры в пространстве. Для понимания всех вопросов начертательной геометрии необходимо мысленно представлять фигуры и плоскости проекций в пространстве.

Кроме ортогонального проецирования существуют центральное, косоугольное и другие виды проецирования. В данном пособии используется только ортогональное проецирование, поэтому в дальнейшем вид проецирования указываться не будет.

Ортогональное проецирование.

Предмет н.г

Начертательная геометрия является одной из фундаментальных наук, составляющих основу инженерно-технического образования. Она изучает методы изображений пространственных геометрических фигур на плоскости и способы решения по этим изображениям метрических и позиционных задач в пространстве. Начертательная геометрия используется также при конструировании сложных поверхностей технических форм в авиационной, судостроительной и других отраслях транспорта и промышленности. Методы начертательной геометрии позволяют решать многие прикладные задачи специальных инженерных дисциплин.

Читайте также  Нервно-мышечные нарушения голоса и речи

Методы проецирования

Для отображения точек оригинала на чертеже применяют операцию проецирования. В зависимости от положения проецирующих лучей проецирование может быть либо центральным (коническим), либо параллельным (цилиндрическим). При центральном проецировании все проеци­рующие лучи исходят из одной точки — центра проеци­рования, находящегося на определённом расстоянии от плоскости проекций. При параллельном проецировании все проеци­рующие лучи параллельны между собой.

центр.проец.

Параллельное проецирование.Параллельное проецирование можно рассматривать как частный случай центрального проецирования с бесконечно удаленным центром проекций. При параллельном проецировании все проеци­рующие лучи параллельны между собой.

1. Проекция точки есть точка

2. Проекция прямой есть прямая

3.Если точка К принадлежит прямой а, то и проекция этой точки принадлежит проекции прямой

4. Если точка К делит отрезок АDв отношенииm:nто и проекция этой точки делит в таком же отношении проекцию этого отрезка

5. Проекция точки пересечения прямых есть точка пересечения проекций этих прямых

6. Проекции параллельных прямых параллельны

7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

8. Прямая, параллельная направлению проецирования, проецируется в точку

7 и 8 инвариантные свойства

9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре

Ортогональное проецирование.

ортогональное проецирование — это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.

1. Проекция точки есть точка

2. Проекция прямой есть прямая

3.Если точка К принадлежит прямой а, то и проекция этой точки принадлежит проекции прямой

4. Если точка К делит отрезок АDв отношенииm:nто и проекция этой точки делит в таком же отношении проекцию этого отрезка

5. Проекция точки пересечения прямых есть точка пересечения проекций этих прямых

6. Проекции параллельных прямых параллельны

7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

8. Прямая, параллельная направлению проецирования, проецируется в точку

9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре

10. Если хотя бы одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость проекций прямой угол проецируется без искажения

Теорема:

Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.

Следствие: если прямоугольная проекция угла, одна сторона которого параллельна плоскости проекций, — прямой угол, то проецируемый угол также прямой.

Система плоскостей проекции. Все пространственные геометрические фигуры могут быть ориентированы относительно декартовой прямоугольной системы координатных осей — системы трех взаимно перпендикулярных координатных плоскостей

Эти координатные плоскости обозначаются: 1. Горизонтальная плоскость проекций — π1;

2. Фронтальная плоскость проекций — π2;

3. Профильная плоскость проекций — π3.

ось абсцисс Х делит горизонтальную плоскость проекций π1 на две части: переднюю полу π1 (оси Х и Y) и заднюю полу π1 (оси Х и — Y).

Ось абсцисс Х делит фронтальную плоскость проекций π2 также на две части: верхнюю полу π2 (оси Х и Z) и нижнюю полу π2 (оси Х и — Z).

Оси ординат Y и аппликат Z делят профильную плоскость проекций π3 на четыре части:

1. Верхнюю переднюю полу π3 (оси Y и Z)

2. Верхнюю заднюю полу π3 (оси –Y и Z)

3. Нижнюю переднюю полу π3 (оси Y и –Z)

4. Нижнюю заднюю полу π3 (оси – Y и –Z)

Эпюра Монжа Для построения плоской модели пространственной геометрической фигуры каждая ее точка проецируется ортогонально на плоскости проекций π1, π2 и π3, которые затем совмещаются в одну плоскость. Полученная таким образом плоская модель пространственной геометрической фигуры называется эпюром Монжа.

Прямая не параллельная ни одной из плоскостей проекций, называется прямой общего положения.
Положение прямой в пространстве необходимо и достаточно определяется двумя точками, ей принадлежащими или точкой и направляющим вектором

Частное положение прямой

1. Горизонтальная прямая h – горизонталь

Горизонтальная прямая – это прямая, параллельная горизонтальной плоскости проекций π1.

2. Фронтальная прямая f – фронталь

Фронтальная прямая – это прямая параллельная фронтальной плоскости проекций π2.

3. Профильная прямая p (рис. 2.4)

Профильная прямая – это прямая, параллельная профильной плоскости проекций π3

Прямые перпендикулярные к какой-либо координатной плоскости называются проецирующими прямыми.
Они делятся на горизонтально-проецирующие, фронтально-конкурирующие, профильно-проецирующие.

Проецирующие прямые имеют два важных свойства:

1. они параллельны двум координатным плоскостям

2.на плоскость к которой они перпендикулярны они проецируются в точку

ГОРИЗОНТАЛЬНО — ПРОЕЦИРУЮЩИЕ ПРЯМЫЕ

ФРОНТАЛЬНО — ПРОЕЦИРУЮЩИЕ ПРЯМЫЕ

ПРОФИЛЬНО — ПРОЕЦИРУЮЩИЕ ПРЯМЫЕ

Следом прямой линии называется точка, в которой прямая пересекается с плоскостью проекций (так как след — точка, принадлежащая одной из плоскостей проекций, то одна из её координат должна быть равна нулю)

Горизонтальный след — М (zM=0)-точка пересечения прямой с горизонтальной плоскостью проекций.

Фронтальный след — N (yN=0)— точка пересечения прямой с фронтальной плоскостью проекций.

Профильный след — Т (xТ=0)— точка пересечения прямой с профильной плоскостью проекций.

Взаимное положение прямых

Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны.

1. Пересекающиеся прямые

Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку.

2. Параллельные прямые

параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке).

Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки.

Две прямые, пересекающиеся под прямым углом, называютсяперпендикулярными.

1. Через точку А можно провести только одну перпендикулярную прямую АВ к прямой СD

2. Из точки A можно опустить перпендикуляр на прямую CD

3. Несколько перпендикуляров, проведенных через точки прямой к прямой, никогда между собой не пересекаются

Проекции центральные и параллельные

В общем случае проекции преобразуют точки, заданные в системе координат размерностью n, в системы координат размерностью меньше чем n.

Будем рассматривать случай проецирования трех измерений в два. Проекция трехмерного объекта (представленного в виде совокупности точек) строится при помощи прямых проекционных лучей, которые называются проекторами и которые проходят через каждую точку объекта и, пересекая картинную плоскость, образуют проекцию.

Рис. 3.7. Центральная и параллельная проекции

Определенный таким образом класс проекций существует под названием плоских геометрических проекций, так как проецирование производится на плоскость, а не на искривленную поверхность и в качестве проекторов используются прямые, а не кривые линии.

Многие картографические проекции являются либо не плоскими, либо не геометрическими.

Плоские геометрические проекции в дальнейшем будем называть просто проекциями.

Проекции делятся на два основных класса (рис. 3.7):

Полная классификация проекций приведена на рис. 3.8.

Рис. 3.8. Классификация проекций

Параллельные проекции делятся на два типа в зависимости от соотношения между направлением проецирования и нормалью к проекционной плоскости (рис. 3.9.):

1) ортографические – направления совпадают, т. е. направление проецирования является нормалью к проекционной плоскости;

2) косоугольные – направление проецирования и нормаль к проекционной плоскости не совпадают.

Рис. 3.9. Ортографические и косоугольные проекции

Наиболее широко используемыми видами ортографических проекций является вид спереди, вид сверху(план) и вид сбоку, в которых картинная плоскость перпендикулярна главным координатным осям. Если проекционные плоскости не перпендикулярны главным координатным осям, то такие проекции называются аксонометрическими.

При аксонометрическом проецировании сохраняется параллельность прямых, а углы изменяются; расстояние можно измерить вдоль каждой из главных координатных осей (в общем случае с различными масштабными коэффициентами).

Читайте также  Матрицы и определители

Изометрическая проекция – нормаль к проекционной плоскости, (а следовательно и направление проецирования) составляет равные углы с каждой из главных координатных осей. Если нормаль к проекционной плоскости имеет координаты (a,b,c), то потребуем, чтобы |a| = |b| = |c|, или±a=±b=±c, т. е. имеется 8 направлений (по одному в каждом из октантов), которые удовлетворяют этому условию. Однако существует лишь 4 различных изометрических проекции (если не рассматривать удаление скрытых линий), так как векторы (a, a, a) и (-a,-a,-a) определяют нормали к одной и той же проекционной плоскости.

Изометрическая проекция (рис. 3.10.) обладает следующим свойством: все 3 главные координатные оси одинаково укорачиваются. Поэтому можно проводить измерения вдоль направления осей с одним и тем же масштабом. Кроме того, главные координатные оси проецируются так, что их проекции составляют равные углы друг с другом (120°).

Рис. 3.10. Изометрическая проекция единичного куба

Косоугольные (наклонные) проекции сочетают в себе свойства ортографических проекций (видов спереди, сверху и сбоку) со свойствами аксонометрии. В этом случае проекционная плоскость перпендикулярна главной координатной оси, поэтому сторона объекта, параллельная этой плоскости, проецируется так, что можно измерить углы и расстояния. Проецирование других сторон объекта также допускает проведение линейных измерений (но не угловых) вдоль главных осей. Отметим, что нормаль к проекционной плоскости и направление проецирования не совпадают.

Двумя важными видами косоугольных проекций являются проекции:

· Кавалье (cavalier) – горизонтальная косоугольная изометрия (военная перспектива);

· Кабине (cabinet) – фронтальная косоугольная диметрия.

Рис. 3.11. Проекция Кавалье

В проекции Кавалье (рис. 3.11.) направление проецирования составляет с плоскостью угол 45°. В результате проекция отрезка, перпендикулярного проекционной плоскости, имеет ту же длину, что и сам отрезок, т. е. укорачивание отсутствует.

Рис. 3.12. Проекция Кабине

Проекция Кабине (рис. 3.12.) имеет направление проецирования, которое составляет с проекционной плоскостью угол = arctg(½) (≈26,5°). При этом отрезки, перпендикулярные проекционной плоскости, после проецирования составляют ½ их действительной длины. Проекции Кабине являются более реалистическими, чем проекции Кавалье, так как укорачивание с коэффициентом ½ больше согласуется с нашим визуальным опытом.

Центральная проекция любой совокупности параллельных прямых, которые не параллельны проекционной плоскости, будет сходиться в точке схода. Точек схода бесконечно много. Если совокупность прямых параллельна одной из главных координатных осей, то их точка схода называетсяглавной точкой схода. Имеются только три такие точки, соответствующие пересечениям главных координатных осей с проекционной плоскостью. Центральные проекции классифицируются в зависимости от числа главных точек схода, которыми они обладают, а следовательно и от числа координатных осей, которые пересекают проекционную плоскость.

1. Одноточечная проекция (рис. 3.13).

Рис. 3.13. Одноточечная перспектива

2. Двухточечная проекция широко применяется в архитектурном, инженерном и промышленном проектировании.

3. Трехточечные центральные проекции почти совсем не используются, во-первых, потому, что их трудно конструировать, а во-вторых, из-за того, что они добавляют мало нового с точки зрения реалистичности по сравнению с двухточечной проекцией.

2) Инвариантные свойства параллельного проецирования

Геометрические фигуры в общем случае проецируются на плоскость проекций с искажением. Проекции не сохраняют линейные и угловые величины оригинала. Характер искажений зависит от положения геометрической фигуры в пространстве, от аппарата проецирования и от положения плоскости проекций.

Однако некоторые геометрические свойства фигур остаются неизменными в процессе проецирования. Такие свойства геометрических фигур называются независимыми или инвариантными для данного аппарата проецирования.

Рассмотрим основные инвариантные свойства параллельного проецирования.

1. Проекция точки есть точка

Это очевидно из самого определения проекции как точка пересечения проецирующей прямой с плоскостью.

2. Проекция прямой есть прямая (рис. 1.6)

.

Рис. 1.6. Инвариантные свойства 2, 3, 4

Все проецирующие прямые, проходящие через точки прямой а параллельно направлению проецирования S, образуют проецирующую, или лучевую, плоскость α.

Проекция прямой а на плоскость π1 определяется как линия пересечения этой лучевой плоскостиαс плоскостью π1, т. е. прямая

Если точка К принадлежит прямой а, то и проекция этой точки принадлежит проекции прямой (рис. 1.6).

Это свойство следует непосредственно из определения проекции геометрической фигуры как множества проекций всех точек.

Если точка К принадлежит прямой а и плоскости α, то и проецирующий луч lК принадлежит плоскости α. Следовательно, этот луч пересечет плоскость π1 в линии пересечения плоскостей α и π1, т. е. в точке К1, принадлежащей проекции прямой а1.

4. Если точка К делит отрезок АD в отношении m : n то и проекция этой точки делит в таком же отношении проекцию этого отрезка (рис. 1.6):

Фигура ADD1A1 – трапеция. Прямая КК1 параллельна основаниям трапеции АА1 и DD1, следовательно делит ее стороны АD и А1D1 на пропорциональные части.

5. Проекция точки пересечения прямых есть точка пересечения проекций этих прямых (рис. 1.7)

.

Рис. 1.7. Пример инвариантного свойства 5

Действительно, точка К принадлежит одновременно прямым АВ и CD. По третьему инвариантному свойству проекция этой точки К1 должна принадлежать проекциям этих прямых, т. е. должна являться точкой пересечения этих проекций.

6. Проекции параллельных прямых параллельны (рис. 1.8)

Лучевые плоскости α и β, проходят через параллельные прямые АВ и CD. Они параллельны, так как две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости (АВ CD и АА1 СС1). Но две параллельные плоскости пересекаются с третьей по параллельным прямым, следовательно, А1В1 С1D1.

7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

Исключение составляет многоугольник (плоская ломаная или кривая линия) расположенный в проецирующей (лучевой) плоскости. Такой многоугольник проецируется в прямую линию (рис. 1. 9).

.

Рис. 1.8. Пример инвариантного свойства

.

Рис. 1.9. Примеры инвариантных свойств 7, 8

8. Прямая, параллельная направлению проецирования, проецируется в точку (рис. 1.9)

9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре (рис. 1.10).

Следствия этого инвариантного свойства следующие:

1. Проекция отрезка прямой, параллельной плоскости проекций, конгруэнтна и параллельна самому отрезку (рис. 1.10):

2. Проекция угла, стороны которого параллельны плоскости проекций, конгруэнтна этому углу (рис. 1.10).

Метод Гаспара Монжа

МЕТОД МОНЖА

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартиннымили комплексным. Основные принципы построения таких чертежей изложены Гаспаром Монжем — крупным французским геометром конца 18, начала 19 веков, 1789-1818 гг. одним из основателей знаменитой политехнической школы в Париже и участником работ по введению метрической системы мер и весов.

Постепенно накопившиеся отдельные правила и приемы таких изображений были приведены в систему и развиты в труде Г. Монжа «Geometriedescriptive».

Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций (рис.6). Одну из плоскостей проекций П1 располагают горизонтально, а вторую П2 — вертикально. П1 — горизонтальная плоскость проекций, П2— фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: