Диспут и формула Кардано - OXFORDST.RU

Диспут и формула Кардано

Решение кубических уравнений. Формула Кардано

Схема метода Кардано
Приведение кубических уравнений к трехчленному виду
Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи
Формула Кардано
Пример решения кубического уравнения

Схема метода Кардано

Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени ( кубических уравнений )

ax 3 + a1x 2 +
+ a2x + a3= 0,
(1)

где a, a1, a2, a3 – произвольные вещественные числа,

Вывод формулы Кардано состоит из двух этапов.

На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями .

На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.

Приведение кубических уравнений к трехчленному виду

Разделим уравнение (1) на старший коэффициент a . Тогда оно примет вид

x 3 + ax 2 + bx + c = 0, (2)

где a, b, c – произвольные вещественные числа.

Заменим в уравнении (2) переменную x на новую переменную y по формуле:

(3)

то уравнение (2) примет вид

В результате уравнение (2) примет вид

Если ввести обозначения

то уравнение (4) примет вид

y 3 + py + q= 0, (5)

где p, q – вещественные числа.

Уравнения вида (5) и являются трёхчленными кубическими уравнениями , у которых отсутствует член со второй степенью неизвестного.

Первый этап вывода формулы Кардано завершён.

Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи

Следуя методу, примененому Никколо Тартальей (1499-1557) для решения трехчленных кубических уравнений, будем искать решение уравнения (5) в виде

(6)

где t – новая переменная.

то выполнено равенство:

Следовательно, уравнение (5) переписывается в виде

(7)

Если теперь уравнение (7) умножить на t , то мы получим квадратное уравнение относительно t :

(8)

Формула Кардано

Решение уравнения (8) имеет вид:

В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:

В развернутой форме эти решения записываются так:

Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.

С другой стороны,

и для решения уравнения (5) мы получили формулу

которая и называется «Формула Кардано» .

Замечание . Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).

Пример решения кубического уравнения

Пример . Решить уравнение

x 3 – 6x 2 – 6x – 2 = 0. (13)

Решение . Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену

x = y + 2. (14)

Следовательно, уравнение (13) принимает вид

y 3 – 18y – 30 = 0. (15)

Теперь в соответствии с формулой (6) сделаем в уравнении (15) еще одну замену

(16)

то уравнение (15) примет вид

(17)

Далее из (17) получаем:

Отсюда по формуле (16) получаем:

Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу

или использовали формулу

Далее из равенства (18) в соответствии с (14) получаем:

Таким образом, мы нашли у уравнения (13) вещественный корень

Замечание 1 . У уравнения (13) других вещественных корней нет.

Замечание 2 . Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.

Claw.ru | Рефераты по математике | Диспут и формула Кардано

Диспут и формула Кардано

| Категория реферата: Рефераты по математике
| Теги реферата: мировая экономика, выборы реферат
| Добавил(а) на сайт: Сюсин.

[pic].
(Произведение кубических радикалов в последнем равенстве должно равняться p
).
Это и есть знаменитая формула Кардано. Если перейти от y вновь к x, то получим формулу, определяющую корень общего уравнения 3-й степени.

Молодой человек, так безжалостно обошедшийся с Тарталья, разбирался в математике столь же легко, как и в правах неприхотливой тайны. Феррари находит способ решения уравнения 4-й степени. Кардано поместил этот способ в свою книгу. Что же представляет собой этот способ?

Пусть [pic] (1)
– общее уравнение 4-й степени.
Если положить [pic], то уравнение (1) можно привести к виду

[pic], (2) где p,q,r – некоторые коэффициенты, зависящие от a,b,c,d,e. Легко видеть, что это уравнение можно записать в таком виде:

В самом деле, достаточно раскрыть скобки, тогда все члены, содержащие t, взаимно уничтожается, и мы возвратимся к уравнению (2).

Выберем параметр t так ,чтобы правая часть уравнения (3) была полным квадратом относительно y. Как известно, необходимым и достаточным условием этого является обращение в нуль дискриминанта из коэффициентов трехчлена
(относительно y), стоящего справа:

[pic] (4)
Получили полное кубическое уравнение, которое мы уже можем решить. Найдем какой либо его корень и внесем его в уравнение (3), теперь примет вид

[pic].
Это квадратное уравнение. Решая его, можно найти корень уравнения(2), а следовательно и (1).

За 4 месяца до смерти Кардано закончил свою автобиографию, которою он напряженно писал весь последний год и которая должна была подвести итог его сложной жизни. Он чувствовал приближение смерти. По некоторым сведениям его собственный гороскоп связывал его кончину с 75- летием. Он умер 21сентября
1576г. за 2 дня до годовщины. Имеется версия, что он покончил с собой в ожидании неминуемой смерти или даже чтобы подтвердить гороскоп. В любом случае Кардано – астролог относился к гороскопу серьезно.

Замечание о формуле Кардано

Проанализируем формулу для решения уравнения[pic] в вещественной области.
Итак,
[pic]
При вычислении x нам приходится извлекать в начале квадратный корень, а затем кубический. Мы сможем извлечь квадратный корень, оставаясь в вещественной области, если [pic]. Два значения квадратного корня, отличающихся знаком, фигурируют в разных слагаемых для x. Значения кубического корня в вещественной области единственно и получается единственный вещественный корень x при [pic]. Исследуя график кубического трехчлена [pic],нетрудно убедиться, что он в самом деле имеет единственный вещественный корень при [pic]. При [pic] имеется три вещественных корня.
При [pic] имеется двукратный вещественный корень и однократный, а при [pic]
-трехкратный корень x=0.

Продолжим исследование формулы при [pic]. Оказывается. Что если при этом уравнение с целыми коэффициентами имеет целочисленный корень, при вычислении его по формуле могут возникнуть промежуточные иррациональности.
Например, уравнение [pic] имеет единственный корень (вещественный) – x=1.
Формула Кардано дает для этого единственного вещественного корня выражение

[pic]. Но фактически любое доказательство предполагает использование того, что это выражение является корнем уравнения [pic]. Если же не угадать того, при преобразовании будут возникать неистребимые кубические радикалы.

О проблеме Кардано – Тартальи вскоре забыли. Формулу для решения кубического уравнения связали с «Великим искусством» и постепенно стали называть формулой Кардано.

У многих возникало желание восстановить истинную картину событий в ситуации, когда их участники несомненно не говорили всей правды. Для многих было важно установить степень вины Кардано. К концу XIX века часть дискуссий стала носить характер серьезных историко-математических исследований. Математики поняли, какую большую роль в конце XVI века сыграли работы Кардано. Стало ясно то, что еще раньше отмечал Лейбниц:
«Кардано был великим человеком при всех его недостатках; без них он был бы совершенством».

Скачали данный реферат: Bikeev, Usilov, Lasman, Zhivenkov, Климентий, Roberta.
Последние просмотренные рефераты на тему: отцы и дети сочинение, матершинные частушки, банк дипломов, контрольная работа 3.

Реферат: Диспут и формула Кардано

Диспуты в средние века всегда представляли собой интересное зрелище, привлекавшие праздных горожан от мала до велика. Темы диспутов носили разнообразный характер, но обязательно научный. При этом под наукой понимали то, что входило в перечень так называемых семи свободных искусств было, конечно, и богословие. Богословские диспуты были наиболее частыми. Спорили обо всем. Например, о том , приобщать ли мышь к духу святому, если съест причастие, могла ли Кумская сивилла предсказать рождение Иисуса Христа, почему братья и сестры спасителя не причислены к лику святых и т. д.

О споре, который должен был произойти между прославленным математиком и не менее прославленным врачом, высказывались лишь самые общие догадки, так как толком никто ничего не знал. Говорили, что один из них обманул другого (кто именно и кого именно, неизвестно). Почти все те, кто собрались на площади имели о математике самые смутные представления, но каждый с нетерпением ожидал начала диспута. Это всегда было интересно, можно было посмеяться над неудачником, независимо от того, прав он или нет.

Читайте также  Арктика и Антарктида

Когда часы на ратуше пробили пять, врата широко распахнулись, и толпа бросилась внутрь собора. По обе стороны от осевой линии, соединяющей вход с алтарем, у двух боковых колонн были воздвигнуты две высокие кафедры, предназначенные для спорщиков. Присутствующие громко шумели, не обращая никакого внимания на то, что находились в церкви. Наконец, перед железной решеткой, отделявшей иконостас от остальной части центрального нефа, появился городской глашатай в черно-фиолетовом плаще и провозгласил: «Достославные граждане города Милана! Сейчас перед вами выступит знаменитый математик Никколо Тарталья из Брении. Его противником должен был быть математик и врач Джеронимо Кардано. Никколо Тарталья обвиняет Кардано в том, что последней в своей книге «Ars magna» опубликовал способ решения уравнения 3-Й ­­ степени, принадлежащий ему, Тарталье. Однако сам Кардано на диспут прийти не смог и поэтому прислал своего ученика Луидже Феррари. Итак, диспут объявляется открытым, участники его приглашаются на кафедры». На левую от входа кафедру поднялся неловкий человек с горбатым носом и курчавой бородой, а на противополжную кафедру взошел молодой человек двадцати с небольшим лет, с красивым самоуверенным лицом. Во всей его манере держаться сказывалась полная уверенность в том, что каждый его жест и каждое его слово будут приняты с восторгом.

— Уважаемые господа! Вам известно, что 13 лет назад мне удалось найти способ решения уравнения 3-й степени и тогда я, пользуясь этим способом, одержал победу в диспуте с Фиори. Мой способ привлек внимание вашего согражданина Кардано, и он приложил всё своё хитроумное искусство, чтобы выведать у меня секрет. Он не остановился ни перед обманом, ни перед прямым подлогом. Вы знаете также, что 3 года назад в Нюрнберге вышла книга Кардано о правилах алгебры, где мой способ, так бессовестно выкраденный, был сделан достоянием каждого. Я вызвал Кардано и его ученика на состязание. Я предложил решить 31 задачу, столько же было предложено и мне моими противниками. Был определен срок для решения задач – 15 дней. Мне удалось за 7 дней решить большую часть тех задач, которые были составлены Кардано и Феррари. Я напечатал их и послал с курьером в Милан. Однако мне пришлось ждать целых пять месяцев, пока я получил ответы к своим задачам. Они были решены не правильно. Это и дало мне основание вызвать обоих на публичный диспут.

Тарталья замолчал. Молодой человек, посмотрев на несчастного Тарталью, произнес:

— Уважаемые господа! Мой достойный противник позволил себе в первых же словах своего выступления высказать столько клеветы в мой адрес и в адрес моего учителя, его аргументация была столь голословной, что мне едва ли доставит какой-либо труд опровергнуть первое и показать вам несостоятельность второго. Прежде всего, о каком обмане может идти речь, если Никколо Тарталья совершенно добровольно поделился своим способом с нами обоими? И вот как пишет Джеронимо Кардано о роли моего противника в открытии алгебраического правила. Он говорит, что не ему, Кардано, «а моему другу Тарталье принадлежит честь открытия такого прекрасного и удивительного, превосходящего человеческое остроумие и все таланты человеческого духа. Это открытие есть по истине небесный дар, такое прекрасное доказательство силы ума, его постигнувшего, что уже ничто не может считаться для него недостижимым.»

— Мой противник обвинил меня и моего учителя в том, что мы будто бы дали не верное решение его задач. Но как может быть неверным корень уравнения, если подставляя его в уравнение и выполняя все предписанные в этом уравнении действия, мы приходим к тождеству? И уже если сеньор Тарталья хочет быть последовательным, то он должен был ответить на замечание, почему мы, укравшие, но его словами, его изобретение и использовавши его для решения предложенных задач, получили неверное решение. Мы – мой учитель и я – не считаем, однако изобретение синьора Тартальи маловажным. Это изобретение замечательно. Более того, я, опираясь в значительной мере на него, нашел способ решения уравнения 4-й степени, и в «Ars magna» мой учитель говорит об этом. Что же хочет от нас сеньор Тарталья? Чего он добивается диспутом?

— Господа, господа, — закричал Тарталья, — я прошу вас выслушать меня! Я не отрицаю того, что мой молодой противник очень силен в логике и красноречии. Но этим нельзя заменить истинное математическое доказательство. Задачи, которые я дал Кардано и Феррари, решены не правильно, но и я докажу это. Действительно, возьмем, например, уравнение из числа решавшихся. Оно, как известно …

В церкви поднялся невообразимый шум, поглотивший полностью окончание фразы, начатой незадачливым математиком. Ему не дали продолжать. Толпа, требовала от него, чтобы он замолчал, и чтобы очередь была предоставлена Феррари. Тарталья, видя, что продолжение спора совершенно бесполезно, поспешно опустился с кафедры и вышел через северный притвор на площадь. Толпа бурно приветствовала «победителя» диспута Луиджи Феррари.

…Так закончился этот спор, который и сейчас продолжает вызывать все новые и новые споры. Кому в действительности принадлежит способ решения уравнения 3-й степени? Мы говорим сейчас – Никколо Тарталье. Он открыл , а Кардано выманил у него это открытие. И если сейчас мы называем формулу, представляющую корни уравнения 3-й степени через его коэффициенты, формулой Кардано, то это — историческая несправедливость. Однако, несправедливость ли? Как подсчитать меру участия в открытии каждого из математиков? Может быть, со временем кто-то и сможет ответить на этот вопрос совершенно точно, а может быть это останется тайной …

Если воспользоваться современным математическим языком и современной символикой, то вывод формулы Кардано может быть найден с помощью следующих в высшей степени элементарных соображений:

Пусть нам дано общее уравнение 3-й степени:

Уравнения высоких степеней (стр. 2 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

2х5 + 3х4 — 5х³ — 5х² + 3х + 2 = 0

(х — 1) (2х4 + х³ — 6х² + х + 2) = 0, а затем решаем как п. 1

1.6 ДИСПУТ. ФОРМУЛА КАРДАНО.

Диспуты в средние века всегда представляли собой интересное зрелище, привлекавшие праздных горожан от мала до велика. Темы диспутов носили разнообразный характер, но обязательно научный. При этом под наукой понимали то, что входило в перечень так называемых семи свободных искусств было, конечно, и богословие. Богословские диспуты были наиболее частыми. Спорили обо всем. Например, о том, приобщать ли мышь к духу святому, если съест причастие, могла ли Кумская сивилла предсказать рождение Иисуса Христа, почему братья и сестры спасителя не причислены к лику святых и т. д.

О споре, который должен был произойти между прославленным математиком и не менее прославленным врачом, высказывались лишь самые общие догадки, так как толком никто ничего не знал. Говорили, что один из них обманул другого (кто именно и кого именно, неизвестно). Почти все те, кто собрались на площади имели о математике самые смутные представления, но каждый с нетерпением ожидал начала диспута. Это всегда было интересно, можно было посмеяться над неудачником, независимо от того, прав он или нет.

Когда часы на ратуше пробили пять, врата широко распахнулись, и толпа бросилась внутрь собора. По обе стороны от осевой линии, соединяющей вход с алтарем, у двух боковых колонн были воздвигнуты две высокие кафедры, предназначенные для спорщиков. Присутствующие громко шумели, не обращая никакого внимания на то, что находились в церкви. Наконец, перед железной решеткой, отделявшей иконостас от остальной части центрального нефа, появился городской глашатай в черно-фиолетовом плаще и провозгласил: “Достославные граждане города Милана! Сейчас перед вами выступит знаменитый математик Никколо Тарталья из Брении. Его противником должен был быть математик и врач Джеронимо Кардано. Никколо Тарталья обвиняет Кардано в том, что последней в своей книге “Ars magna” опубликовал способ решения уравнения 3-Й­­ степени, принадлежащий ему, Тарталье. Однако сам Кардано на диспут прийти не смог и поэтому прислал своего ученика Луидже Феррари. Итак, диспут объявляется открытым, участники его приглашаются на кафедры”. На левую от входа кафедру поднялся неловкий человек с горбатым носом и курчавой бородой, а на противополжную кафедру взошел молодой человек двадцати с небольшим лет, с красивым самоуверенным лицом. Во всей его манере держаться сказывалась полная уверенность в том, что каждый его жест и каждое его слово будут приняты с восторгом.

Читайте также  Нарушения белкового обмена

— Уважаемые господа! Вам известно, что 13 лет назад мне удалось найти способ решения уравнения 3-й степени и тогда я, пользуясь этим способом, одержал победу в диспуте с Фиори. Мой способ привлек внимание вашего согражданина Кардано, и он приложил всё своё хитроумное искусство, чтобы выведать у меня секрет. Он не остановился ни перед обманом, ни перед прямым подлогом. Вы знаете также, что 3 года назад в Нюрнберге вышла книга Кардано о правилах алгебры, где мой способ, так бессовестно выкраденный, был сделан достоянием каждого. Я вызвал Кардано и его ученика на состязание. Я предложил решить 31 задачу, столько же было предложено и мне моими противниками. Был определен срок для решения задач – 15 дней. Мне удалось за 7 дней решить большую часть тех задач, которые были составлены Кардано и Феррари. Я напечатал их и послал с курьером в Милан. Однако мне пришлось ждать целых пять месяцев, пока я получил ответы к своим задачам. Они были решены не правильно. Это и дало мне основание вызвать обоих на публичный диспут.

Тарталья замолчал. Молодой человек, посмотрев на несчастного Тарталью, произнес:

— Уважаемые господа! Мой достойный противник позволил себе в первых же словах своего выступления высказать столько клеветы в мой адрес и в адрес моего учителя, его аргументация была столь голословной, что мне едва ли доставит какой-либо труд опровергнуть первое и показать вам несостоятельность второго. Прежде всего, о каком обмане может идти речь, если Никколо Тарталья совершенно добровольно поделился своим способом с нами обоими? И вот как пишет Джеронимо Кардано о роли моего противника в открытии алгебраического правила. Он говорит, что не ему, Кардано, “а моему другу Тарталье принадлежит честь открытия такого прекрасного и удивительного, превосходящего человеческое остроумие и все таланты человеческого духа. Это открытие есть по истине небесный дар, такое прекрасное доказательство силы ума, его постигнувшего, что уже ничто не может считаться для него недостижимым.”

— Мой противник обвинил меня и моего учителя в том, что мы будто бы дали не верное решение его задач. Но как может быть неверным корень уравнения, если подставляя его в уравнение и выполняя все предписанные в этом уравнении действия, мы приходим к тождеству? И уже если сеньор Тарталья хочет быть последовательным, то он должен был ответить на замечание, почему мы, укравшие, но его словами, его изобретение и использовавши его для решения предложенных задач, получили неверное решение. Мы – мой учитель и я – не считаем, однако изобретение синьора Тартальи маловажным. Это изобретение замечательно. Более того, я, опираясь в значительной мере на него, нашел способ решения уравнения 4-й степени, и в “Ars magna” мой учитель говорит об этом. Что же хочет от нас сеньор Тарталья? Чего он добивается диспутом?

— Господа, господа, — закричал Тарталья, — я прошу вас выслушать меня! Я не отрицаю того, что мой молодой противник очень силен в логике и красноречии. Но этим нельзя заменить истинное математическое доказательство. Задачи, которые я дал Кардано и Феррари, решены не правильно, но и я докажу это. Действительно, возьмем, например, уравнение из числа решавшихся. Оно, как известно …

В церкви поднялся невообразимый шум, поглотивший полностью окончание фразы, начатой незадачливым математиком. Ему не дали продолжать. Толпа, требовала от него, чтобы он замолчал, и чтобы очередь была предоставлена Феррари. Тарталья, видя, что продолжение спора совершенно бесполезно, поспешно опустился с кафедры и вышел через северный притвор на площадь. Толпа бурно приветствовала “победителя” диспута Луиджи Феррари.

…Так закончился этот спор, который и сейчас продолжает вызывать все новые и новые споры. Кому в действительности принадлежит способ решения уравнения 3-й степени? Мы говорим сейчас – Никколо Тарталье. Он открыл, а Кардано выманил у него это открытие. И если сейчас мы называем формулу, представляющую корни уравнения 3-й степени через его коэффициенты, формулой Кардано, то это — историческая несправедливость. Однако, несправедливость ли? Как подсчитать меру участия в открытии каждого из математиков? Может быть, со временем кто-то и сможет ответить на этот вопрос совершенно точно, а может быть это останется тайной …

Формула Кардано

Если воспользоваться современным математическим языком и современной символикой, то вывод формулы Кардано может быть найден с помощью следующих в высшей степени элементарных соображений:

Пусть нам дано общее уравнение 3-й степени:

ax3+3bx2+3cx+d=0 (1)

Если положить

, то мы приведем уравнение (1) к виду

(2)

где ,

.

Введем новое неизвестное U с помощью равенства

.

Внося это выражение в (2), получим

(3)

,

Если числитель и знаменатель второго слагаемого умножить на выражение и учесть, получающееся в результате выражение для u оказывается симметричным относительно знаков “+” и “-”, то окончательно получим

.

(Произведение кубических радикалов в последнем равенстве должно равняться p ).

Это и есть знаменитая формула Кардано. Если перейти от y вновь к x, то получим формулу, определяющую корень общего уравнения 3-й степени.

Молодой человек, так безжалостно обошедшийся с Тарталья, разбирался в математике столь же легко, как и в правах неприхотливой тайны. Феррари находит способ решения уравнения 4-й степени. Кардано поместил этот способ в свою книгу. Что же представляет собой этот способ?

Пусть (1)

общее уравнение 4-й степени.

Если положить ,

то уравнение (1) можно привести к виду

, (2)

где p,q,r – некоторые коэффициенты, зависящие от a,b,c,d,e. Легко видеть, что это уравнение можно записать в таком виде:

(3)

В самом деле, достаточно раскрыть скобки, тогда все члены, содержащие t, взаимно уничтожается, и мы возвратимся к уравнению (2).

Выберем параметр t так ,чтобы правая часть уравнения (3) была полным квадратом относительно y. Как известно, необходимым и достаточным условием этого является обращение в нуль дискриминанта из коэффициентов трехчлена (относительно y), стоящего справа:

(4)

Диспут и формула Кардано

Диспут Формула Кардано Мостового Кирилла г. Одесса 1999г Диспут Диспуты в средние века всегда представляли собой интересное зрелище, привлекавшие праздных горожан от мала до велика. Темы диспутов носили разнообразный характер, но обязательно научный. При этом под наукой понимали то, что входило в перечень так называемых семи свободных искусств было, конечно, и богословие. Богословские диспуты были наиболее частыми. Спорили обо всем. Например, о том , приобщать ли мышь к духу святому, если съест причастие, могла ли Кумская сивилла предсказать рождение Иисуса Христа, почему братья и сестры спасителя не причислены к лику святых и т. д. О споре, который должен был произойти между прославленным математиком и не менее прославленным врачом, высказывались лишь самые общие догадки, так как толком никто ничего не знал. Говорили, что один из них обманул другого (кто именно и кого именно, неизвестно). Почти все те, кто собрались на площади имели о математике самые смутные представления, но каждый с нетерпением ожидал начала диспута. Это всегда было интересно, можно было посмеяться над неудачником, независимо от того, прав он или нет. Когда часы на ратуше пробили пять, врата широко распахнулись, и толпа бросилась внутрь собора. По обе стороны от осевой линии, соединяющей вход с алтарем, у двух боковых колонн были воздвигнуты две высокие кафедры, предназначенные для спорщиков. Присутствующие громко шумели, не обращая никакого внимания на то, что находились в церкви. Наконец, перед железной решеткой, отделявшей иконостас от остальной части центрального нефа, появился городской глашатай в черно-фиолетовом плаще и провозгласил: «Достославные граждане города Милана! Сейчас перед вами выступит знаменитый математик Никколо Тарталья из Брении. Его противником должен был быть математик и врач Джеронимо Кардано. Никколо Тарталья обвиняет Кардано в том, что последней в своей книге «Ars mag a» опубликовал способ решения уравнения 3-Й степени, принадлежащий ему, Тарталье. Однако сам Кардано на диспут прийти не смог и поэтому прислал своего ученика Луидже Феррари. Итак, диспут объявляется открытым, участники его приглашаются на кафедры». На левую от входа кафедру поднялся неловкий человек с горбатым носом и курчавой бородой, а на противополжную кафедру взошел молодой человек двадцати с небольшим лет, с красивым самоуверенным лицом. Во всей его манере держаться сказывалась полная уверенность в том, что каждый его жест и каждое его слово будут приняты с восторгом. Начал Тарталья. — Уважаемые господа! Вам известно, что 13 лет назад мне удалось найти способ решения уравнения 3-й степени и тогда я, пользуясь этим способом, одержал победу в диспуте с Фиори. Мой способ привлек внимание вашего согражданина Кардано, и он приложил всё своё хитроумное искусство, чтобы выведать у меня секрет. Он не остановился ни перед обманом, ни перед прямым подлогом. Вы знаете также, что 3 года назад в Нюрнберге вышла книга Кардано о правилах алгебры, где мой способ, так бессовестно выкраденный, был сделан достоянием каждого. Я вызвал Кардано и его ученика на состязание.

Читайте также  Кокс и коксование

Я предложил решить 31 задачу, столько же было предложено и мне моими противниками. Был определен срок для решения задач – 15 дней. Мне удалось за 7 дней решить большую часть тех задач, которые были составлены Кардано и Феррари. Я напечатал их и послал с курьером в Милан. Однако мне пришлось ждать целых пять месяцев, пока я получил ответы к своим задачам. Они были решены не правильно. Это и дало мне основание вызвать обоих на публичный диспут. Тарталья замолчал. Молодой человек, посмотрев на несчастного Тарталью, произнес: — Уважаемые господа! Мой достойный противник позволил себе в первых же словах своего выступления высказать столько клеветы в мой адрес и в адрес моего учителя, его аргументация была столь голословной, что мне едва ли доставит какой-либо труд опровергнуть первое и показать вам несостоятельность второго. Прежде всего, о каком обмане может идти речь, если Никколо Тарталья совершенно добровольно поделился своим способом с нами обоими? И вот как пишет Джеронимо Кардано о роли моего противника в открытии алгебраического правила. Он говорит, что не ему, Кардано, «а моему другу Тарталье принадлежит честь открытия такого прекрасного и удивительного, превосходящего человеческое остроумие и все таланты человеческого духа. Это открытие есть по истине небесный дар, такое прекрасное доказательство силы ума, его постигнувшего, что уже ничто не может считаться для него недостижимым.» — Мой противник обвинил меня и моего учителя в том, что мы будто бы дали не верное решение его задач. Но как может быть неверным корень уравнения, если подставляя его в уравнение и выполняя все предписанные в этом уравнении действия, мы приходим к тождеству? И уже если сеньор Тарталья хочет быть последовательным, то он должен был ответить на замечание, почему мы, укравшие, но его словами, его изобретение и использовавши его для решения предложенных задач, получили неверное решение. Мы – мой учитель и я – не считаем, однако изобретение синьора Тартальи маловажным. Это изобретение замечательно. Более того, я, опираясь в значительной мере на него, нашел способ решения уравнения 4-й степени, и в «Ars mag a» мой учитель говорит об этом. Что же хочет от нас сеньор Тарталья? Чего он добивается диспутом? — Господа, господа, — закричал Тарталья, — я прошу вас выслушать меня! Я не отрицаю того, что мой молодой противник очень силен в логике и красноречии. Но этим нельзя заменить истинное математическое доказательство. Задачи, которые я дал Кардано и Феррари, решены не правильно, но и я докажу это. Действительно, возьмем, например, уравнение из числа решавшихся. Оно, как известно В церкви поднялся невообразимый шум, поглотивший полностью окончание фразы, начатой незадачливым математиком. Ему не дали продолжать. Толпа, требовала от него, чтобы он замолчал, и чтобы очередь была предоставлена Феррари. Тарталья, видя, что продолжение спора совершенно бесполезно, поспешно опустился с кафедры и вышел через северный притвор на площадь. Толпа бурно приветствовала «победителя» диспута Луиджи Феррари. Так закончился этот спор, который и сейчас продолжает вызывать все новые и новые споры.

Кому в действительности принадлежит способ решения уравнения 3- й степени? Мы говорим сейчас – Никколо Тарталье. Он открыл , а Кардано выманил у него это открытие. И если сейчас мы называем формулу, представляющую корни уравнения 3-й степени через его коэффициенты, формулой Кардано, то это — историческая несправедливость. Однако, несправедливость ли? Как подсчитать меру участия в открытии каждого из математиков? Может быть, со временем кто-то и сможет ответить на этот вопрос совершенно точно, а может быть это останется тайной Формула Кардано Если воспользоваться современным математическим языком и современной символикой, то вывод формулы Кардано может быть найден с помощью следующих в высшей степени элементарных соображений: Пусть нам дано общее уравнение 3-й степени: ax3 3bx2 3cx d=0 (1) Если положить (2)где .Введем новое неизвестное U с помощью равенства (3) Отсюда Если числитель и знаменатель второго слагаемого умножить на выражение и учесть, получающееся в результате выражение для u оказывается симметричным относительно знаков « » и «-», то окончательно получим . (Произведение кубических радикалов в последнем равенстве должно равняться p ). Это и есть знаменитая формула Кардано. Если перейти от y вновь к x, то получим формулу, определяющую корень общего уравнения 3-й степени. Молодой человек, так безжалостно обошедшийся с Тарталья, разбирался в математике столь же легко, как и в правах неприхотливой тайны. Феррари находит способ решения уравнения 4-й степени. Кардано поместил этот способ в свою книгу. Что же представляет собой этот способ? Пусть (1) – общее уравнение 4-й степени. Если положить , (2) где p,q,r – некоторые коэффициенты, зависящие от a,b,c,d,e. Легко видеть, что это уравнение можно записать в таком виде: (3) В самом деле, достаточно раскрыть скобки, тогда все члены, содержащие , взаимно уничтожается, и мы возвратимся к уравнению (2). Выберем параметр так ,чтобы правая часть уравнения (3) была полным квадратом относительно y. Как известно, необходимым и достаточным условием этого является обращение в нуль дискриминанта из коэффициентов трехчлена (относительно y), стоящего справа: (4) Получили полное кубическое уравнение, которое мы уже можем решить. Найдем какой либо его корень и внесем его в уравнение (3), теперь примет вид . Это квадратное уравнение. Решая его, можно найти корень уравнения(2), а следовательно и (1). За 4 месяца до смерти Кардано закончил свою автобиографию, которою он напряженно писал весь последний год и которая должна была подвести итог его сложной жизни. Он чувствовал приближение смерти. По некоторым сведениям его собственный гороскоп связывал его кончину с 75- летием. Он умер 21сентября 1576г. за 2 дня до годовщины. Имеется версия, что он покончил с собой в ожидании неминуемой смерти или даже чтобы подтвердить гороскоп. В любом случае Кардано – астролог относился к гороскопу серьезно. Замечание о формуле Кардано Проанализируем формулу для решения уравнения При вычислении x нам приходится извлекать в начале квадратный корень, а затем кубический. Мы сможем извлечь квадратный корень, оставаясь в вещественной области, если .

В Библии этой подробности нет. Значит, по мысли Иосифа Флавия, таковой а) вообще должна быть нормативная реакция гоев на возможность досадить евреям; б) евреи должны жить и действовать, предполагая именно такую реакцию. В средневековом «Диспуте Нахманида» иудей толкует псалом «Рече Господь Господу моему седи одесную Мене дондеже положу враги твои к подножию ног Твоих». Иудей соглашается, что речь идет о Мессии. И поясняет: «Бог и будет помогать мессии, доколе положит все народы в подножие ног его, ибо все они враги его они порабощают его, они отрицают его пришествие и его власть, а некоторые из них создали себе другого мессию»[272]. А уже ближе к нашим временам и местам ребе Элимелех из Лежайска огульно обвинял все не-еврейское человечество: «Народы ненавидят Израиль»[273]. Итак, в истории еврейской мысли есть течение, которое полагает, что все народы враги евреев. А «все» значит, и христиане, а отнюдь не только «потомки Амалика» или идолопоклонники. Кстати, оба только что процитированных иудейских автора жили в христианском окружении и тем не менее сказали свои решительно-тоталитарные формулы ненависти

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: