Большой адронный коллайдер 3 - OXFORDST.RU

Большой адронный коллайдер 3

Большой Адронный Коллайдер своими глазами. Часть 3

Продолжу свой рассказ про посещение дня открытых дверей в CERN.

Часть 3. Вычислительный центр.

В этой части я расскажу о месте, где хранят и обрабатывают то, что является продуктом работы CERN — результаты экспериментов. Речь пойдет про вычислительный центр, хотя правильнее, наверное, его назвать дата центром. Но сначала я немного коснусь проблематики вычислений и хранения данных в CERN. Каждый год один только Большой Адронный Коллайдер производит такое количество данных, что если их записать на CD, получится стопка высотой 20 километров. Это происходит из-за того, что при работе коллайдера пучки сталкиваются 30 миллионов раз в секунду и при каждом столкновении возникает примерно 20 событий, каждое из которых производит большое количество информации в детекторе. Конечно, эта информация обрабатывается сначала в самом детекторе, затем поступает в локальный вычислительный центр и только потом передается в главный центр хранения и обработки данных. Тем не менее, приходится обрабатывать примерно петабайт данных каждый день. К этому надо добавить то, что эти данные надо не только хранить но и распределять между исследовательскими центрами по всему миру, а кроме того, поддерживать примерно 4000 пользователей WiFi сети в самом CERN. Необходимо добавить, что существует вспомогательный центр хранения и обработки данных в Венгрии, с которым существует 100 гигабитный линк. При этом внутри CERN проложено 35000 километров оптического кабеля.
Однако, таким мощным компьютерный центр был не всегда. На фотографии видно, как менялось используемое оборудование с течением времени.

Сейчас произошел переход от мейнфреймов к гриду обычных РС. В настоящее время центр обладает 90000 процессорных ядер в 10000 серверов, которые работают 24 часа в сутки 7 дней в неделю. В среднем на этом гриде одновременно работает 250000 заданий по обработке данных. Этот вычислительный центр находится на пике современных технологий и, часто, двигает вычислительную технику и IT вперед для решения задач, необходимых для хранения и обработки таких больших объемов данных. Достаточно упомянуть то, что в здании, находящемся недалеко от вычислительного центра Тимом Бернерсом-Ли был изобретен World Wide Web (расскажите об этом тем идиотам альтернативно одаренным, которые, сидя в интернете, говорят, что фундаментальная наука не приносит пользы).

Однако вернемся к проблеме хранения данных. На фотографии видно, что в допотопные времена раньше данные хранились на магнитных дисках (Да, да, я помню эти диски объемом 29 мегабайт на ЕС ЭВМ).

Чтобы посмотреть, как обстоят дела сегодня, я иду к зданию, где находится вычислительный центр.

Там, на удивление, народу не очень много и я довольно быстро прохожу внутрь. Нам показывают небольшой фильм, а затем ведут к запертой двери. Наш гид открывает дверь и мы оказываемся в достаточно большом зале, где находятся шкафы с магнитными лентами, на которых и записана информация.

Большая часть зала занята этими самыми шкафами.

В них хранится порядка 100 петабайт информации (что эквивалентно 700 годам Full HD видео) в 480 миллионах файлов. Интересно, что к этой информации имеют доступ примерно 10000 физиков по всему миру в 160 вычислительных центрах. Эта информация содержит все экспериментальные данные начиная с 70-х годов прошлого века. Если присмотреться повнимательнее, видно, как эти магнитные ленты расположены внутри шкафов.

В некоторых стойках находятся процессорные модули.

На столе располагается небольшая выставка того, что используется для хранения данных.

Этот вычислительный центр потребляет 3.5 мегаватта электрической энергии и имеет свой дизель-генератор на случай отключения электричества. Надо также сказать про систему охлаждения. Она расположена снаружи здания и гонит холодный воздух под фальш-полом. Водяное охлаждение используется лишь на небольшом числе серверов.

Если взглянуть внутрь шкафа, видно, как происходит автоматическая выборка и загрузка магнитных лент.

Пройдя далее можно увидеть стойки с другим оборудованием.

Вообще-то этот зал является не единственным залом, где расположена вычислительная техника, но то, что посетителей пустили хотя-бы сюда уже вызывает уважение к организаторам. Я сфотографировал то, что демонстрировалось на столе.

После этого появилась другая группа посетителей и нас попросили на выход. Делаю последнюю фотографию и покидаю вычислительный центр.

В следующей части я расскажу про мастерские, где создается и собирается уникальное оборудование, которое используется в физических экспериментах.

Не только бозон Хиггса: что еще нашли в Большом адронном коллайдере

В этом году адронным коллайдерам исполнилось 50 лет. 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings. За последние 10 лет на Большом адронном коллайдере открыты 50 новых частиц, а не только известный бозон Хиггса. Рассказываем, что это за частицы.

Читайте «Хайтек» в

Сколько новых частиц открыты на Большом адронном коллайдере?

Самым известным открытием, конечно же, является бозон Хиггса. Менее известен тот факт, что за последние 10 лет эксперименты на БАК (Большом адронном коллайдере) также обнаружили более 50 новых частиц, называемых адронами. По совпадению, число 50 появляется в контексте адронов дважды, поскольку в 2021 году исполняется 50 лет адронным коллайдерам: 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings, что сделало его первым ускорителем в мире. История возникновения столкновений между двумя противоположно вращающимися пучками адронов.

Что такое адроны?

Так что же это за новые адроны, которых всего 59? Давайте начнем с самого начала: адроны не являются элементарными частицами — физики знают это с 1964 года, когда Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили то, что сегодня известно как модель кварков. Она представила адроны как составные частицы, состоящие из новых типов элементарных частиц — кварков.

Кварки рождаются свободными, но встречаются только связанными…

Фрэнк Вилчек,
лауреат Нобелевской премии по физике за за открытие асимптотическое свободы в теории сильных взаимодействий, 2004 г.

Сам термин «адрон» происходит от греческого «хадрос» («сильный») и отражает свойство адронов участвовать в сильных взаимодействиях. Это короткодействующие фундаментальные взаимодействия, связывающие кварки внутри нуклонов и других адронов. Сила этого взаимодействия намного превосходит силу трех других фундаментальных взаимодействий — электромагнитного, слабого и гравитационного.

Адроны — связанные системы кварков и антикварков. Они существуют двух типов — барионы и мезоны.

  • Барионы (барионный заряд В = +1) — частицы, состоящие из трех кварков (qqq), и являющиеся фермионами (J = 1/2, 3/2, …). К числу барионов относятся, например, протон и нейтрон.
  • Антибарионы (В = -1) состоят из трех антикварков (). Антипротон и антинейтрон входят с группу антибарионов.
  • Мезоны (В = 0), состоящие из кварка и антикварка (q), занимают промежуточное положение. Мезоны имеют целочисленное значение спина и являются бозонами (J = 0, 1, 2, …).

В свою очередь, кварки — фундаментальные частицы в Стандартной модели . Они обладают электрическим зарядом, кратным e/3, и не наблюдаются в свободном состоянии.

Как появляются новые адроны?

Но точно так же, как исследователи все еще открывают новые изотопы спустя 150 лет после того, как Менделеев создал периодическую таблицу, исследования возможных составных состояний, образованных кварками, все еще являются активной областью физики элементарных частиц.

Причина этого кроется в квантовой хромодинамике, или КХД, теории, описывающей сильное взаимодействие, которое удерживает кварки вместе внутри адронов. У этого взаимодействия есть несколько любопытных особенностей, включая тот факт, что сила взаимодействия не уменьшается с расстоянием. Это приводит к свойству, которое запрещает существование свободных кварков вне адронов — ограничение цвета. Такие особенности делают эту теорию очень сложной с математической точки зрения.

Фактически до настоящего времени само ограничение цвета не было доказано аналитически. И у ученых до сих пор нет способа точно предсказать, какие комбинации кварков могут образовывать адроны.

Что мы знаем об адронах?

Еще в 1960-х годах было уже более 100 известных разновидностей адронов. Их обнаружили в экспериментах на ускорителях и в экспериментах с космическими лучами. Модель кварков позволила физикам описать весь «зоопарк» как разные составные состояния всего трех разных кварков: верхнего, нижнего и странного. Все известные адроны могут быть описаны либо как состоящие из трех кварков (образующих барионы), либо как кварк-антикварковые пары (образующие мезоны). Но теория также предсказывала другие возможные устройства кварков.

Уже в оригинальной статье Гелл-Манна о кварках 1964 года идея частиц, содержащих более трех кварков, считалась возможной. Сегодня ученые знают, что такие частицы действительно существуют. И все же потребовалось несколько десятилетий, чтобы экспериментально подтвердить первые четырехкварковые и пятикварковые адроны, или тетракварки и пентакварки.

Полный список из 59 новых адронов, обнаруженных на БАК, показан на изображении ниже.

Некоторые из этих частиц являются пентакварками, некоторые — тетракварками, а некоторые — новыми (возбужденными) состояниями барионов и мезонов с более высокой энергией.

  • Пентакварки — группа составных субатомных частиц, состоящих из пяти кварков. Их существование было доказано с использованием Большого адронного коллайдера в июле 2015 года. Являются барионами, адронами, фермионами, резонансами. Порождают направление исследований в адронной спектроскопии — физику пентакварков.
  • Тетракварк — элементарная частица, адрон, состоящий из двух кварков и двух антикварков. Спин тетракварка может быть только целым, поэтому тетракварковую структуру могут иметь только мезоны.
  • Барионы — семейство элементарных частиц: сильно взаимодействующие фермионы , состоящие из трёх кварков. В 2015 году было также доказано существование аналогичных частиц из 5 кварков, названных пентакварками. К основным барионам относятся (по мере возрастания массы): протон, нейтрон, лямбда-барион, сигма-гиперон, кси-гиперон, омега-гиперон. Масса омега-гиперона (3 278 масс электрона) почти в 1,8 раз больше массы протона.
  • Мезон — адрон, имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы (π-мезоны), каоны (K-мезоны) и другие, более тяжёлые, мезоны. Первоначально мезоны были предсказаны как частицы, являющиеся переносчиками сильного взаимодействия и отвечающие за удержание протонов и нейтронов в атомных ядрах. Все мезоны нестабильны. Благодаря наличию энергии связи масса мезона во много раз больше суммы масс составляющих его кварков. Барионы вместе с мезонами (последние состоят из чtтного числа кварков) составляют группу элементарных частиц, участвующих в сильном взаимодействии и называемых адронами.
Читайте также  Концепция развития и обучения Выготского и Эльконина

Открытие этих новых частиц вместе с измерениями их свойств по-прежнему дает важную информацию для проверки границ кварковой модели. В свою очередь, это позволяет исследователям углубить понимание сильного взаимодействия, проверить теоретические предсказания и настроить модели. Стоит отметить, что это особенно важно для исследований, проводимых на БАК. Дело в том, что сильное взаимодействие отвечает за большинство того, что происходит при столкновении адронов. Чем лучше ученые поймут сильное взаимодействие, тем точнее будет моделирование этих столкновений. В итоге шансы увидеть небольшие отклонения от ожиданий, которые могут намекать на возможные новые физические явления, вырастут.

Первый адрон, открытый на БАК (LHC), χb (3P), был открыт ATLAS, а самые последние включают новый возбужденный красивый странный барион, наблюдаемый CMS, и четыре тетракварка, обнаруженные LHCb.

Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в середине 70-х годов после экспериментального подтверждения существования кварков.

Фермион — частица или квазичастица с полуцелым значением спина, собственного момента импульса элементарных частиц.

Большой адронный коллайдер: назначение, открытия и мифы

Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).

10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

  1. Ускоритель частиц. Разгоняет и сталкивает протоны с помощью системы мощных электромагнитов, расположенных вдоль всего тоннеля.
  2. Детекторы. Результаты столкновения нельзя наблюдать напрямую, поэтому мощные детекторы улавливают максимум данных и направляют их на обработку.
  3. Грид. С детекторов поступают петабайты данных. Для их интерпретации используется грид-инфраструктура — сеть из компьютеров в 36 странах, которые совместно образуют один суперкомпьютер. Но даже этого хватает только на обработку 1% данных.

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

Есть две причины, чтобы не волноваться.

  1. На БАК не происходит ничего такого, чего не делают космические лучи, которые ежедневно попадают на Землю, и эти лучи не создают чёрных дыр.
  2. Даже если Большой адронный коллайдер действительно создаст чёрную дыру, то она будет крошечной. Чем меньше чёрная дыра, тем короче ее жизнь. Такая чёрная дыра превратится в энергию, прежде чем сможет причинить вред людям.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Ожидание и реальность: результаты работы Большого адронного коллайдера

Европейский центр ядерных исследований, или просто ЦЕРН, – место, где рядом с вами в столовой запросто может обедать нобелевский лауреат по физике. Он известен во всем мире благодаря самому мощному ускорителю частиц – Большому адронному коллайдеру. Спустя почти десять лет работы пришло время подвести итог – оправдал ли надежды ученых один из самых амбициозных научных проектов современности?

В 2008 году я училась в десятом классе. Несмотря на то, что в те годы я еще совершенно не интересовалась физикой, волна ажиотажа не смогла обойти меня стороной: из каждого утюга трубили, что вот-вот запустят «машину судного дня». Что как только Очень Важный Директор поднимет рубильник, образуется черная дыра и нам всем конец. В день официального старта Большого адронного коллайдера некоторые учителя даже позволили на своих уроках посмотреть репортаж с места событий.

Самого страшного не произошло. По большому счету, не произошло ничего – рубильник был поднят, на экране компьютера заскакали непонятные простому обывателю цифры, а ученые начали праздновать. В общем, зачем запускали, было непонятно.

Несомненно, без Большого адронного коллайдера ученые не смогли бы совершить некоторые знаменательные открытия – в том числе речь идет об обнаружении бозоне Хиггса. Но все ли из запланированного удастся реализовать, и есть ли еще перспективы у БАК – об этом и расскажем.

Эксперимент DELPHI Большого электрон-позитронного коллайдера

Старший брат: Большой электрон-позитронный коллайдер

В конце семидесятых годов XX века физика элементарных частиц развивалась семимильными шагами. Для проверки предсказаний Стандартной модели в 1976 году был предложен проект Большого электрон-позитронного коллайдера (БЭП или LEP – от англ. Large Electron-Positron Collider) в Европейском центре ядерных исследований (ЦЕРН, от фр. CERN – Conseil Européen pour la Recherche Nucléaire). Среди множества различных конфигураций был выбран вариант расположения будущего эксперимента в подземном тоннеле длиной 27 километров. Ему предполагалось ускорять электроны и позитроны до энергий порядка десятков и сотен гигаэлектронвольт: встречные пучки пересекались в четырех точках, в которых впоследствии расположились эксперименты ALEPH, DELPHI, OPAL и L3.

С точки зрения физиков энергии никогда не бывает мало: выбранный в итоге для реализации вариант БЭП был компромиссом между стоимостью и мощностью; рассматривались и туннели большей длины, способные сильнее ускорять частицы. Итоговая энергия могла использоваться для проверки Стандартной модели, но была слишком мала для поиска так называемой «новой физики» – явлений, которые не предсказываются ее законами. Гораздо лучше для таких целей подходят адронные коллайдеры – ускорители составных частиц вроде протонов, нейтронов и атомных ядер. Еще в 1977 году, в момент обсуждения БЭП, Джон Адамс, директор ЦЕРН в то время, предлагал сделать туннель шире, и разместить там сразу оба ускорителя – и электрон-позитронный, и адронный. Однако, совет, принимающий итоговые решения, эту идею отклонил, и в 1981 году был утвержден проект Большого электрон-позитронного коллайдера.

Туннель Большого адронного коллайдера

На смену приходит LHC

БЭП проработал больше десяти лет: с 1989 по 2000 год. Этому времени принадлежит ряд знаменательных экспериментов, таких как подтверждение предсказанных масс переносчиков слабого взаимодействия – W- и Z-бозонов, а также измерение различных параметров Стандартной модели с беспрецедентной точностью. И уже в 1984 году была проведена конференция «Большой адронный коллайдер в туннеле LEP», посвященная вопросу строительства нового коллайдера после прекращения работы предшественника.

Читайте также  Значение супов в питании

В 1991 году был окончательно утвержден проект Большого адронного коллайдера (БАК или LHC – от англ. Large Hadron Collider), при помощи которого планировалось достигнуть суммарной энергии сталкивающихся частиц в 14 тераэлектронвольт, то есть в сто раз большей, чем развивал Большой электрон-позитронный коллайдер.

В 1992 году была проведена встреча, посвященная научной программе Большого адронного коллайдера: всего было получено двенадцать заявок на различные эксперименты, которые могли бы быть построены на месте четырех точек столкновения пучков. В течении последующих лет были одобрены два эксперимента общей направленности – ATLAS и CMS, эксперимент ALICE по изучению тяжелых ионов и LHCb, посвященный физике частиц, содержащих b-кварки. Сооружение Большого адронного коллайдера началось в 2000 году, а первые пучки были получены уже в 2008 году: с тех пор и по сей день, помимо планового отключения, LHC в рабочем режиме ускоряет частицы и набирает данные.

Россия в ЦЕРН

Российская Федерация с 1993 года является страной-наблюдателем в ЦЕРН, что дает право ее представителями присутствовать на заседаниях, но не дает права голосовать при принятии важных решений. В 2012 году от имени Правительства РФ было внесено заявление о намерении вступления Российской Федерации в ассоциированные члены ЦЕРН, которое на настоящий момент не было поддержано.

Всего в проектах ЦЕРН участвует около 700 российских ученых из двенадцати научных организаций, таких как Объединенный институт ядерных исследований, Российский научный центр «Курчатовский институт», Институт ядерных исследований Российской академии наук и Московский государственный университет имени М.В. Ломоносова.

Инжекционная цепь Большого адронного коллайдера

Как выгодно ускорять частицы?

Схема работы Большого адронного коллайдера состоит из множества этапов. Перед тем как попасть непосредственно в БАК, частицы проходят ряд стадий пред-ускорения: таким образом набор скорости происходит быстрее и при этом с меньшими затратами энергии. Сначала в линейном ускорителе LINAC2 протоны или ядра достигают энергии в 50 мегаэлектронвольт; затем они поочередно попадают в бустерный синхротрон (PSB), протонный синхротрон (PS) и протонный суперсинхротрон (SPS), и на момент инжекции в коллайдер итоговая энергия частиц составляет 450 гигаэлектронвольт.

Помимо основных четырех экспериментов в тоннеле Большого адронного коллайдера, предускорительная система является площадкой для более чем десяти экспериментов, которым не требуется столь большая энергия частиц. В их число входят, в частности, эксперимент NA61/SHINE, исследующий параметры взаимодействия тяжелых ионов с фиксированной мишенью; эксперимент ISOLDE, исследующий свойства атомных ядер, а также AEGIS, исследующий гравитационное ускорение Земли при помощи антиводорода.

Поиски частицы Бога и новой физики

Еще в самом начале, на этапе разработки, была заявлена претенциозная научная программа Большого адронного коллайдера. В первую очередь, вследствие указаний, полученных на БЭП, планировался поиск бозона Хиггса – еще гипотетической в то время составляющей Стандартной модели, отвечающей за массу всех частиц. В том числе в планы ученых входил и поиск суперсимметричного бозона Хиггса и его суперпартнеров, входящих в минимальное суперсимметричное расширение Стандартной модели.

В целом как отдельное направление планировался поиск и проверка моделей «новой физики». Для проверки суперсимметрии, в которой каждому бозону сопоставляется фермион, и наоборот, предполагалось вести поиски соответствующих партнеров для частиц Стандартной модели. Для проверки теорий с дополнительными пространственными измерениями, таких как теория струн или М-теория, были заявлены возможности постановки ограничений на число измерений в нашем мире. Именно поиск отклонений от Стандартной модели считали, и до сих пор считают одной из основных задач БАК.

Менее громкие задачи: исследование кварк-глюонной плазмы и нарушения CP-инвариантности

Топ-кварк, самый тяжелый из шести кварков Стандартной модели, до Большого адронного коллайдера наблюдался лишь на ускорителе Тэватрон в Национальной ускорительной лаборатории имени Энрико Ферми в США из-за своей крайне большой массы в 173 гигаэлектронвольта. При столкновениях в БАК, благодаря его мощности, ожидалось рождение большого числа топ-кварков, которые интересовали ученых в двух аспектах. Первый был связан с изучением иерархии частиц: на данный момент наблюдается три поколения кварков (топ-кварк завершил третье), но не исключено, что их все же больше. С другой стороны, рождение бозона Хиггса при распаде топ-кварка считалось основным способом его экспериментального детектирования.

В 1964 году было открыто нарушение комбинированной CP-инвариантности (от англ. «charge» – заряд и «parity» – четность), которое соответствует зеркальному отображению нашего мира с полной заменой всех частиц на соответствующие античастицы. Данный факт играет важную роль в теориях образования Вселенной, которые пытаются объяснить, почему все наше вещество состоит именно из материи, а не из антиматерии. В том числе нарушение CP-четности проявляется в поведении B-мезонов – частиц, активное рождение которых предполагалось в процессе столкновений в БАК, и с их помощью ученые надеялись пролить свет на причины данного явления.

Работа Большого адронного коллайдера в режиме столкновения тяжелых ядер должна была приводить к воссозданию состояния кварк-глюонной плазмы, которое, по современным представлениям, наблюдается через 10-5 секунд после Большого взрыва – состоянию настолько «горячему», что кварки и глюоны не взаимодействуют друг с другом, и не образуют частицы и ядра, как это происходит в нормальном состоянии. Понимание процессов возникновения и охлаждения кварк-глюонной плазмы необходимо для изучения процессов квантовой хромодинамики – раздела физики, ответственного за описание сильных взаимодействий.

Схема открытия бозона Хиггса в эксперименте ATLAS

Открытие новых частиц на LHC

Итак, чем же может похвастаться за целое десятилетие своей работы Большой адронный коллайдер?

Во-первых, конечно же, самое известное из открытий – обнаружение в июле 2012 года бозона Хиггса массой 126 гигаэлектронвольт. Всего годом позднее Питер Хиггс и Франсуа Энглер были удостоены Нобелевской премии по физике за теоретическое предсказание существования «частицы Бога», ответственной за массу всего вещества во Вселенной. Теперь, однако, перед физиками стоит новая задача – понять, почему искомый бозон имеет именно такую массу; также продолжаются и поиски суперсимметричных партнеров бозона Хиггса.

В 2015 году в эксперименте LHCb были обнаружены стабильные пентакварки – частицы, состоящие из пяти кварков, а годом позднее – кандидаты на роль тетракварков – частиц, состоящих из двух кварков и двух антикварков. До этих пор считалось, что наблюдаемые частицы состоят не более чем из трех кварков, и физикам еще предстоит уточнить теоретическую модель, которая бы описала подобные состояния.

Все еще в пределах Стандартной модели

Физики надеялись, что БАК сможет решить проблему суперсимметрии – либо полностью ее опровергнуть, либо уточнить, в каком направлении стоит двигаться, поскольку вариантов подобного расширения Стандартной модели огромное количество. Пока что не удалось сделать ни того, ни другого: ученые ставят различные ограничения на параметры суперсимметричных моделей, которые могут отсеять самые простые варианты, но точно не решают глобальных вопросов.

Не было получено так же и явных указаний на физические процессы вне Стандартной модели, на которые, пожалуй, рассчитывало большинство ученых. Однако, стоит отметить, что в эксперименте LHCb также было получено указание на то, что B-мезон, тяжелая частица, содержащая в себе b-кварк, распадается не таким образом, как предсказывает Стандартная модель. Подобное поведение само по себе может служить, например, указанием на существование еще одного нейтрального переносчика слабого взаимодействия – Z’ бозона. Пока что ученые работают над набором экспериментальных данных, которые позволят ограничить различные экзотические сценарии.

Возможная схема будущего 100-километрового коллайдера

Пора начинать рыть новый туннель?

Смог ли Большой адронный коллайдер оправдать вложенные в него силы и средства? Несомненно, хоть и не все поставленные цели по итогам десятилетия пока что достигнуты. В настоящий момент идет второй этап работы ускорителя, после чего будет произведена плановая установка и начнется третья стадия набора данных.

Ученые не теряют надежды произвести следующие великие открытия и уже планируют новые коллайдеры, например, с длиной туннеля в целых 100 километров.

Разогнать Вселенную в адронном коллайдере

Игнат Вершинин 25 июня 2017

Большой Андронный Коллайдер / ATLAS в ЦЕРН. Image Editor / flickr.com (CC BY 2.0)

Подписывайтесь на наш телеграм-канал. Мы публикуем там свежие новости и лучшие фотографии.

Большой адронный коллайдер называют либо «машиной Судного дня», либо ключом к тайне Вселенной, но его значимость не подвергается сомнению.

Как сказал когда-то знаменитый британский мыслитель Бертран Рассел: «Наука – это то, что вы знаете, философия – то, чего не знаете». Казалось бы, что истинно научное знание давно отделилось от своих истоков, которые можно найти в философских изысканиях Древней Греции, но это не совсем так.

На протяжении двадцатого века ученые пытались найти в науке ответ на вопрос об устройстве мира. Этот процесс был похож на поиск смысла жизни: огромное множество теорий, предположений и даже безумный идей. К каким же выводам пришли ученые к началу XXI века?

Весь мир состоит из элементарных частиц, которые представляют собой конечные формы всего сущего, то есть то, что нельзя расщепить на более мелкие элементы. К ним относятся протоны, электроны, нейтроны и так далее. Эти частицы находятся между собой в постоянном взаимодействии. На момент начала нашего столетия оно выражалось в 4 фундаментальных типах: гравитационное, электромагнитное, сильное и слабое. Первое описывается Общей теорией относительности, другие три объединяются в рамках Стандартной модели (квантовая теория). Было также сделано предположение о существовании еще одного взаимодействия, впоследствии названного «поле Хиггса».

Читайте также  Курение и алкоголь при занятиях спортом

Постепенно стала формироваться идея объединения всех фундаментальных взаимодействий в рамках «теории всего», которая изначально воспринималась как шутка, но быстро переросла в мощное научное направление. Зачем это нужно? Всё просто! Без понимания того, как функционирует мир, мы словно муравьи в искусственном гнезде – не выберемся за пределы своих возможностей. Человеческое знание не может (ну, или пока не может, если вы оптимист) охватить устройство мира целиком.

Одной из самых знаменитых теорий, претендующих на «объятие всего», считается теория струн. Она подразумевает, что вся Вселенная и наша с вами жизнь многомерна. Несмотря на разработанную теоретическую часть и поддержку знаменитых физиков, таких, как Брайан Грин и Стивен Хокинг, она не имеет экспериментального подтверждения.

Ученые, спустя десятилетия, устали вещать с трибун и решили построить то, что раз и навсегда должно расставить все точки над «i». Для этого и была создана крупнейшая в мире экспериментальная установка – Большой адронный коллайдер (БАК).

«К коллайдеру!»

Ускоритель в Лаборатории Ферми. Вид на ускорительный центр Fermilab, США. Теватрон (кольцо на заднем плане) и кольцо-инжектор. Над подземными тоннелями видны кольцевые пруды, рассеивающие избыточное тепло от оборудования. Fermilab, Reidar Hahn / wikimedia.org (CC0 1.0)

Что такое коллайдер? Если говорить научным языком, то это – ускоритель заряженных частиц, предназначенный для разгона элементарных частиц для дальнейшего понимания их взаимодействия. Если говорить ненаучным языком – это большая арена (или песочница, если вам угодно), на которой ученые сражаются за подтверждение своих теорий.

Впервые идея столкнуть элементарные частицы и посмотреть, что будет, появилась у американского физика Дональда Вильяма Керста (Donald William Kerst) в 1956 году. Он предположил, что благодаря этому ученым удастся проникнуть в тайны Вселенной. Казалось бы, что плохого в том, чтобы столкнуть между собой два пучка протонов с суммарной энергией в миллион раз больше, чем от термоядерного синтеза? Времена были соответствующие: холодная война, гонка вооружений и все такое.

История создания БАК

Идея создания ускорителя для получения и исследования заряженных частиц появилась еще в начале 1920-х годов, но первые прототипы были созданы только к началу 1930-х. Изначально они представляли собой высоковольтные линейные ускорители, то есть заряженные частицы двигались прямолинейно. Кольцевой вариант был представлен в 1931 году в США, после чего похожие устройства стали появляться в ряде развитых стран – Великобритании, Швейцарии, СССР. Они получили название циклотроны, и стали в дальнейшем активно использоваться для создания ядерного оружия.

Нужно отметить, что стоимость строительства ускорителя частиц неимоверно высокая. Европа, игравшая во время холодной войны не первостепенную роль, поручила его создание Европейской организации по ядерным исследованиям (на русском часто читается как ЦЕРН), которая в дальнейшем занялась и строительством БАК.

ЦЕРН была создана на волне беспокойства мирового сообщества в отношении ядерных исследований в США и СССР, которые могли привести к всеобщему истреблению. Поэтому ученые решили объединить усилия и направить их в мирное русло. В 1954 году ЦЕРН получила своё официальное рождение.

В 1983 году под эгидой ЦЕРН были открыты бозоны W и Z, после чего вопрос об открытии бозонов Хиггса стал лишь делом времени. В том же году началась работа над строительством Большого электрон-позитронного коллайдера (БЭПК), который сыграл первостепенную роль в изучении обнаруженных бозонов. Однако уже тогда стало ясно, что мощности созданного устройства в скором времени окажутся недостаточными. И в 1984 году было принято решение о строительстве БАК, сразу после того, как БЭПК будет демонтирован. Это и произошло в 2000 году.

Строительство БАК, начавшееся в 2001 году, облегчалось тем, что оно происходило на месте бывшего БЭПК, в долине Женевского озера. В связи с вопросами финансирования (в 1995 году стоимость оценивалась в 2,6 млрд швейцарских франков, к 2001 превысила 4,6 млрд, в 2009 составила 6 млрд долларов).

На данный момент БАК располагается в туннеле с длиной окружности 26,7 км и проходит через территории сразу двух европейских стран – Франции и Швейцарии. Глубина туннеля варьируется от 50 до 175 метров. Нужно также отметить, что энергия столкновения протонов в ускорителе достигает 14 тераэлектронвольт, что в 20 раз больше достигнутых результатов при использовании БЭПК.

«Любопытство – не порок, но большое свинство»

27-километровый туннель коллайдера ЦЕРН, расположен в 100 метрах под землей недалеко от Женевы. Здесь будут находиться огромные сверхпроводящие электромагниты. Справа транспортные вагоны. Juhanson / wikipedia.org (CC BY-SA 3.0)

Зачем нужна эта рукотворная «машина Судного дня»? Ученые рассчитывают увидеть мир таким, каким он был сразу после Большого взрыва, то есть в момент образования материи.

Цели, которые поставили перед собой ученые при строительстве БАК:

  1. Подтверждение или опровержение Стандартной модели с целью дальнейшего создания «теории всего».
  2. Доказательство существования бозона Хиггса как частицы пятого фундаментального взаимодействия. Она, согласно теоретическим изысканиям, должна влиять на электрическое и слабое взаимодействие, нарушая их симметрию.
  3. Изучение кварков, представляющих собой фундаментальную частицу, которая в 20 тысяч раз меньше состоящих из них протонов.
  4. Получение и исследование темной материи, составляющей большую часть Вселенной.

Это далеко не единственные цели, возложенные учеными на БАК, но остальные больше относятся к смежным или сугубо теоретическим.

Чего удалось достичь?

Несомненно, наиболее крупным и значимым достижением стало официальное подтверждение существования бозона Хиггса. Открытие пятого взаимодействия (поля Хиггса), которое, по утверждениям ученых, влияет на приобретение массы всеми элементарными частицами. Считается, что при нарушении симметрии в процессе воздействия поля Хиггса на другие поля, бозоны W и Z становятся массивными. Открытие бозона Хиггса настолько велико по своей значимости, что ряд ученых дал им название «божественные частицы».

Кварки объединяются в частицы (протоны, нейтроны и другие), которые получили название адроны. Именно они ускоряются и сталкиваются в БАК, откуда и пошло его название. В процессе работы коллайдера было доказано, что выделить кварк из адрона попросту невозможно. Если вы попытаетесь это сделать, то просто вырвете из, например, протона другой вид элементарной частницы – мезон. Несмотря на то что это лишь один из адронов и ничего нового в себе не несет, дальнейшее изучение взаимодействия кварков должно осуществляться именно небольшими шагами. В исследованиях фундаментальных законов функционирования Вселенной спешка опасна.

Хоть сами кварки и не были открыты в процессе использования БАК, но их существование до определенного момента воспринималось как математическая абстракция. Первые такие частицы были найдены в 1968 году, но лишь в 1995-ом официально доказано существование «истинного кварка». Результаты экспериментов подтверждаются возможностью их воспроизвести. Поэтому достижение БАК аналогичного результата воспринимается не как повтор, а как закрепляющее доказательство их существования! Хотя проблема с реальностью кварков никуда и не исчезла, ведь их просто нельзя выделить из адронов.

Какие планы?

Основная задача по созданию «теории всего» решена не была, но теоретическая проработка возможных вариантов её проявления ведется. До сих пор одной из проблем объединения Общей теории относительности и Стандартной модели остается разная область их действия, в связи с чем вторая не учитывает особенности первой. Поэтому важен выход за пределы Стандартной модели и достижения грани Новой физики.

Суперсимметрия – ученые считают, что она связывает бозонное и фермионное квантовые поля, да так, что они могут превращаться друг в друга. Именно подобная конверсия выходит за рамки Стандартной модели, так как существует теория, что в основе симметричного отображения квантовых полей лежат гравитоны. Они, соответственно, могут являться элементарной частицей гравитации.

Бозон Мадала – гипотеза о существовании бозона Мадала предполагает, что имеется еще одно поле. Только если бозон Хиггса взаимодействует с известными частицами и материей, то бозон Мадала – с темной материей. Несмотря на то что она занимает большую часть Вселенной, её существование не входит в рамки Стандартной модели.

Микроскопическая черная дыра – одно из исследований БАК заключается в создании черной дыры. Да-да, именно той черной, всепоглощающей области в космическом пространстве. Благо, что значительных достижений в этом направлении сделано не было.

На сегодняшний день Большой адронный коллайдер представляет собой многоцелевой исследовательский центр, на основе работы которого создаются и экспериментально подтверждаются теории, которые помогут нам лучше понять устройство мира. Вокруг ряда проводимых исследований, которые клеймятся опасными, нередко поднимаются волны критики, в том числе со стороны Стивена Хокинга, но игра определенно стоит свеч. Мы не сможем плыть в черном океане под названием Вселенная с капитаном, у которого ни карты, ни компаса, ни элементарных знаний об окружающем мире.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: