АТФ и ее роль в клетке - OXFORDST.RU

АТФ и ее роль в клетке

Роль АТФ

Вы будете перенаправлены на Автор24

АТФ – это аденозинтрифосфорная кислота, которая является основным источником клеточной энергии.

Химическое строение АТФ

АТФ является важнейшим клеточным веществом также и потому, что относится к группе нуклеозидтрифосфатов, обеспечивая метаболизм живых клеток.

Первооткрывателем АТФ в клетке являются ученые-биохимики Суббарао, Ломан и Фиске. АТФ была открыта в 1929 году и ее исследования стали революционными в развитии биологии живых систем. Немного позднее в 1941 году Ф. Липман установил энергетическую функцию АТФ.

АТФ обладает определенными чертами строения:

  • представляет собой трифосфорный эфир аденозина;
  • образуется путём соединения аденина, являющегося пуриновым азотистым основанием;
  • соединяется с 1′-углеродом рибозы при помощи β-N-гликозидной связи.

Тем самым АТФ представляет собой такое соединение, которое содержит связи, гидролиз которых высвобождает колоссальное количество энергии. Подобные связи называют макроэргическими. Образуется количество энергии, равное 40 и 60-ти кДж / моль. Также в ходе этого процесса отщепляется один или два остатка фосфорной кислоты. Весь «химизм» описанных выше реакций можно представить следующим образом:

  • АТФ + вода → АДФ + фосфорная кислота + энергия;
  • АДФ + вода → АМФ + фосфорная кислота + энергия.

Общеизвестно, что в биоэнергетическом обмене веществ живых организмов важным является наличие двух основных моментов:

  • химическая энергия запасается путем образования АТФ при протекании катаболических реакций окисления органических субстратов;
  • химическая энергия утилизируется путем расщепления АТФ. Этот процесс сопряжен с эндергоническими реакциями анаболизма, а также другими процессами, которые также требуют энергетических затрат.

Выделяют три основных способа образования АТФ в клетке. А именно:

  • субстратное фосфорилирование, протекающее в цитоплазме клетке. Такие реакции получили название гликолиза или анаэробного этапа аэробного дыхания;
  • окислительное фосфорилирование;
  • фотофосфорилирование.

Готовые работы на аналогичную тему

Роль АТФ в клетке

Процесс фотофосфорилирования — это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света.

АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

Как уже отмечалось ранее, АТФ выполняет в клетке, прежде всего, энергетическую функции. Это обусловлено тем, что подобная молекула содержит две высокоэнергетические связи и обеспечивает многие физиологические и биохимические процессы. К подобным процессам можно отнести все реакции синтеза веществ в организме.

Реакции синтеза – это комплекс химических реакций, направленных на создание вещества с определенной степенью затраты энергии. При этом отмечается активный перенос молекул через клеточную мембрану, включая участие в создании межмембранного электрического потенциала. Также АТФ необходима для обеспечения процесса сокращения мышц.

Также к достаточно важным функциям АТФ, иллюстрирующим ее роль в клетке относят:

  • может являться медиатором в синапсах, сигнальным веществом в других клеточных взаимодействиях. Например, при пуринергической передаче сигнала;
  • АТФ регулирует биохимические процессы. Например, при участии АТФ происходит усиление и подавление активности некоторых ферментов с помощью присоединения к их регуляторным центрам молекулы;
  • участвует в создании циклического аденозинмонофосфата, который, в свою очередь, выступает посредником передачи гормональных сигналов в клетки;
  • наконец, АТФ участвует в синтезе нуклеиновых кислот (ДНК и РНК);
  • АТФ отвечает за обеспечение всех двигательных реакций организма, а именно от ее наличия зависит работа всех элементов опорно – двигательного аппарата.

Любая функция АТФ обусловлена тем, что ее используют для реализации жизненных клеточных процессов. Если АТФ не участвует в нем напрямую, то каким – либо образом обуславливает деятельность организма.

Синтез АТФ в клетке фактически происходит непрерывно, поскольку организму требуется энергия абсолютно на все процессы жизнедеятельности. Своеобразным «неприкосновенным» запасом АТФ в клетке является 250 граммов данного вещества.

Во время нарушения жизнедеятельности организма, при перенесении человеком каких-либо болезней синтез АТФ происходит намного активнее, поскольку необходимо «покрывать» затраты иммунной системы. Также активизируется система терморегуляции организма, на обеспечение работы которой также требуется большое количество энергии.

Больше всего АТФ содержат такие клетки, как мышцы и нервная ткань, энергообмен в которых протекает особенно быстро. Неизменный уровень АТФ в клетках достаточно важно поддерживать, поскольку при минимальном недостатке данного вещества происходят серьёзные нарушения любого физиологического процесса.

Другими словами, АТФ является маркером стабильности развития организма человека и многих высокоорганизованных животных.

К наиболее интересным фактам, касательно АТФ можно отнести следующие:

  • в клетке около 1 млрд молекул АТФ;
  • срок жизни молекул АТФ очень короткий;
  • синтез АТФ протекает достаточно быстро.

Подводя итог всему вышесказанному, можно сделать вывод о том, что АТФ является часто обновляемым веществом организма человека. Продолжительность жизни молекулы АТФ составляет менее одной минуты, поэтому одна молекула АТФ может зарождаться и распадаться до трех тысяч раз за сутки. В течение дня организм человека создает около 40 кг данного вещества.

На примере цикла синтеза АТФ и ее дальнейшего использования в качестве клеточного топлива рассматривают саму суть энергетического обмена внутри живого организма. Поэтому аденозинтрифосфорная кислота выполняет функцию «батарейки», которая обеспечивает нормальную жизнедеятельность клетки.

Ресинтез АТФ в мышечных волокнах

Дано определение ресинтеза АТФ. Описаны основные пути ресинтеза АТФ в мышечных волокнах: креатинфосфатный, гликолитический, миокиназный и тканевое дыхание. Описаны количественные критерии путей ресинтеза АТФ, соотношение между различными путями ресинтеза АТФ при мышечной работе, а также между путями ресинтеза АТФ и зонами относительной мощности.

Ресинтез АТФ в мышечных волокнах

Определение

Ресинтез АТФ – синтез АТФ из различных энергетических субстратов во время физической работы в мышечных волокнах.

Формула ресинтеза АТФ выглядит следующим образом:

Пути ресинтеза АТФ

Ресинтез АТФ может осуществляться двумя путями:

  • с участием кислорода (аэробный путь).
  • без участия кислорода (анаэробный путь);

Аэробный путь (тканевое дыхание, аэробное или окислительное фосфорилирование) – основной способ образования АТФ в мышечных волокнах. Он протекает в митохондриях мышечных волокон. В результате тканевого дыхания выделяется 39 молекул АТФ. Окисляемое вещество распадается до углекислого газа и воды.

Анаэробный ресинтез АТФ

Анаэробные пути ресинтеза АТФ являются дополнительными способами образования АТФ в мышечных волокнах в тех случаях, когда основной путь получения АТФ – тканевое дыхание не может обеспечить мышечную деятельность необходимым количество кислорода. Эти механизмы ресинтеза АТФ активно функционируют в начале выполнения физических упражнений, когда тканевое дыхание не полностью «развернулось», а также при физических нагрузках высокой мощности.

Анаэробный ресинтез АТФ в мышечных волокнах возможен посредством нескольких механизмов:

  • Креатинфосфатный ресинтез АТФ – ресинтез АТФ из креатинфосфата;
  • Гликолитический ресинтез АТФ – ресинтез АТФ из гликогена мышц;
  • Миокиназный (аденилаткиназный) ресинтез АТФ – ресинтез АТФ из АДФ при значительном накоплении в мышечных волокнах АДФ. Рассматривается как аварийный механизм, обеспечивающий ресинтез АТФ, когда другие пути ресинтеза АТФ невозможны.

Количественные критерии путей ресинтеза АТФ

Существуют количественные критерии путей ресинтеза АТФ. К ним можно отнести: максимальную мощность, время развертывания, время сохранения или поддержания максимальной мощности, метаболическую ёмкость (табл. 1).

  • Максимальная мощность – максимальное количество АТФ, которое может образоваться в единицу времени при функционировании данного пути ресинтеза АТФ.
  • Время развертывания – минимальная длительность, необходимая для выхода ресинтеза АТФ на свою максимальную мощность.
  • Время сохранения или поддержания максимальной скорости – длительность функционирования данного пути ресинтеза АТФ с максимальной мощностью.
  • Метаболическая ёмкость – количество АТФ, которое может образоваться во время мышечной работы за счёт данного пути ресинтеза АТФ.
Читайте также  Новые строительные материалы и конструкции, их характеристика

Таблица 1. Количественные критерии основных путей ресинтеза АТФ (С.С. Михайлов, 2009)

Пути ресинтеза АТФ Критерии
Максимальная мощность, кал/мин кг Время развертывания Время сохранения максимальной мощности Метаболическая ёмкость
Креатинфосфатный 900-1100 1-2 с 8-10 с
Гликолитический 750-850 20-30 с 2-3 мин. При анаэробном окислении гликогена образуются 3 молекулы АТФ в расчете на одну молекулу глюкозы
Аэробный 350-450 3-4 мин. Десятки минут При аэробном окислении гликогена образуются 39 молекул АТФ в расчете на одну молекулу глюкозы (самый экономичный)
  • Гипертрофия скелетных мышц человека
  • Биомеханика опорно-двигательного аппарата человека

Соотношение между различными путями ресинтеза АТФ

При любой мышечной работе функционируют все три основных механизма ресинтеза АТФ, но включаются они последовательно. В первые секунды ресинтез АТФ осуществляется за счет креатинфосфатной реакции, затем включается гликолиз. По мере продолжения работы на смену гликолизу приходит тканевое дыхание (рис.1). Эта смена механизмов ресинтеза АТФ приводит к уменьшению суммарной выработки АТФ.

Рис.1. Включение путей ресинтеза АТФ при выполнении физической работы (С.С. Михайлов, 2009)

Пути ресинтеза АТФ и зоны относительной мощности

В.С. Фарфель приводит следующее соотношение мощности работы и основной системы энергообеспечения (табл.2)

Таблица 2. Зоны мощности работы и основная система энергообеспечения (В.С. Фарфель)

Энергетический обмен

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический обмен

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

    Подготовительный этап

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Кислородный этап (аэробный)

Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

АТФ — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания — аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Биология. 11 класс

§ 8. Строение и функции РНК. АТФ

Строение и функции РНК. РНК, так же как и ДНК, представляет собой биополимер, построенный из нуклеотидов. Однако молекулы РНК имеют ряд особенностей. Вы знаете, что в состав нуклеотидов РНК вместо дезоксирибозы входит рибоза, а вместо тимина (Т) — урацил (У). Кроме того, молекулы РНК значительно короче ДНК и представлены одной полинуклеотидной цепью, а не двумя.

Лишь некоторые вирусы имеют двухцепочечные молекулы РНК, представляющие собой генетический материал этих неклеточных форм.

*Количество нуклеотидов в молекулах ДНК, как правило, исчисляется миллионами, в то время как полинуклеотидные цепи РНК обычно состоят из 75—3000 мономерных звеньев. Известно, что некоторые РНК могут включать десятки тысяч нуклеотидов, но это является не правилом, а исключением.*

Молекулы РНК могут принимать различную пространственную конфигурацию, прежде всего за счет образования водородных связей. Но, в отличие от ДНК, эти связи формируются не между двумя разными цепями, а между отдельными участками одной и той же цепи, комплементарными друг другу.

*Содержание ДНК в клетках организма сравнительно постоянно, а количество РНК сильно варьирует. Молекулы РНК обеспечивают синтез белков, поэтому наибольшее их содержание характерно для клеток, активно вырабатывающих белки. Это, например, секреторные клетки пищеварительных и эндокринных желез, синтезирующие ферменты и белковые гормоны, лейкоциты, продуцирующие антитела, и т. д.*

Существует несколько видов РНК, различающихся по строению молекул, содержанию в клетке и выполняемым функциям. Все виды РНК синтезируются на определенных участках одной из цепей ДНК. Такой синтез называется матричным, поскольку молекула ДНК является матрицей (т. е. образцом, моделью) для построения молекул РНК.

Рибосомные РНК (рРНК) составляют более 80 % всех РНК клетки. Молекулы рРНК соединяются с особыми белками и образуют рибосомы — органоиды, в которых происходит синтез белков из аминокислот.

*Молекулы рРНК составляют более 50 % массы рибосомы и имеют сложную объемную структуру. Бóльшую часть цепи рРНК составляют комплементарные участки. Они соединяются водородными связями и приобретают спиральную конфигурацию. Взаимодействуя с рибосомными белками, одна или несколько молекул рРНК компактно укладываются в пространстве. Так формируются субъединицы рибосом — структурные компоненты этих органоидов.

Установлено, что рРНК в составе рибосомы выполняют не только структурную функцию, но и каталитическую. В процессе синтеза белка они ускоряют образование пептидных связей между аминокислотами, т. е. действуют подобно ферментам. Такие молекулы РНК, обладающие каталитическим действием, были названы рибозимами (сокращение от «рибонуклеиновая кислота» и «энзим»). Кроме рРНК, известны и другие рибозимы. Они могут катализировать расщепление самих себя или других молекул РНК, а также соединять фрагменты РНК друг с другом.

Читайте также  Методические рекомендации по организации изучения дисциплины

До открытия рибозимов единственными биологическими катализаторами считались ферменты. За исследование каталитических свойств рибонуклеиновых кислот американские молекулярные биологи С. Олтмен и Т. Чек в 1989 г. были награждены Нобелевской премией.*

Транспортные РНК (тРНК) — самые маленькие из молекул РНК, участвующих в синтезе белков. В среднем они состоят из 80 нуклеотидов. тРНК связывают аминокислоты, доставляют их в рибосомы и обеспечивают правильное включение этих аминокислот в полипептидную цепь. Для каждой из 20 белокобразующих аминокислот существует как минимум одна особая разновидность тРНК, а для некоторых аминокислот — несколько. Содержание тРНК составляет около 15 % от общего количества клеточных РНК.

Все тРНК имеют сходное строение. Благодаря образованию внутримолекулярных водородных связей молекулы тРНК приобретают особую структуру, в которой комплементарно связанные участки чередуются с петлями (рис. 8.1). Такая пространственная конфигурация была названа клеверным листом.

*Как и любая другая полинуклеотидная цепь, молекула тРНК имеет 5′- и 3′-концы. У всех тРНК на 5′-конце находится гуаниловый нуклеотид, а 3′-конец завершается последовательностью ЦЦА. Присоединение аминокислоты происходит именно к 3′-концу молекулы тРНК, поэтому он называется акцепторным хвостом.*

Матричные, или информационные, РНК (мРНК, иРНК) наиболее разнообразны по строению и длине цепей. Молекулы мРНК содержат информацию о первичной структуре определенных белков. Во время синтеза белков в рибосомах они служат матрицами, определяющими порядок расположения аминокислот в белковых молекулах. Поэтому биосинтез белка, так же как и синтез РНК, относится к матричным процессам. Количество мРНК не превышает 3—5 % всех РНК, содержащихся в клетке.

*У ядерных организмов каждая молекула мРНК, как правило, содержит закодированную информацию о структуре одного белка. Для бактерий и вирусов характерны мРНК, кодирующие несколько разных белков.*

Функции рассмотренных видов РНК связаны с процессами синтеза белка. Следовательно, рРНК, тРНК и мРНК обеспечивают реализацию наследственной информации, хранящейся в молекулах ДНК.

Коротко и простым языком про молекулы АТФ

Что оно такое – молекулы АТФ?!

В наших клетках происходят различные энергетические процессы: запасание и использование энергии, ее трансформация и высвобождение. Кажется невероятным, что какая-то абстрактная энергия вдруг может преобразовываться и создавать другие молекулы, выполняя при этом полезную работу для организма.

Для справки: АТФ (аденозинтрифосфат) – молекула, которая выполняет роль источника энергии для всех процессов в организме, в том числе, и для движения. Открыта эта молекула была в 1929 году. Главным источником для производства молекулы АТФ служит глюкоза.

По сути, молекула АТФ – это своеобразная молекулярная батарея, которая сохраняет энергию в те моменты, когда она не используется, и потом высвобождает энергию при необходимости организма.

Структура и формула энергетических молекул

При расщеплении молекулы АТФ происходит сокращение мышечного волокна, из-за чего выделяется энергия, позволяющая мышцам сокращаться.

Для того чтобы дать организму энергию АТФ проходит несколько этапов. В процессе каждого этапа вырабатывается большее количество энергии, но всегда то, которое затребовано самим организмом.

Главный источник для выработки АТФ — это глюкоза, которая расщепляется в клетках. Молекулы АТФ насыщают энергией длинные волокна мышечных тканей, которые содержат протеин — миозин. Именно так формируются мышечные клетки.

Когда наш организм отдыхает – цепочка процессов преображения молекулы АТФ идёт в обратную сторону. И в этих целях также задействована глюкоза. Созданные молекулы АТФ будут вновь использоваться, как только это станет необходимо организму.

Когда созданная молекулами энергия не нужна, она сохраняется в организме и высвобождается тогда, когда это потребуется.

Молекулы АТФ синтезируют три основные биохимические системы:

– Система гликогена и молочной кислоты

Что это дает нашему организму?!

Фосфагенная система – будет использоваться когда мышцы работают недолго, но очень интенсивно (порядка 10 секунд). Благодаря этой системе происходит постоянная циркуляция небольшого количества молекул АТФ в мышечных клетках. Такой энергии хватит на короткий забег или интенсивную силовую нагрузку в бодибилдинге.

Гликоген и молочная кислота — снабжают энергией организм медленнее, чем предыдущая система. Используется энергия АТФ, которой может хватить на полторы минуты интенсивной работы. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Именно благодаря этой системе можно пробежать 400 метров спринтерского бега или рассчитывать на более длительную интенсивную тренировку в зале. Но долгое время так работать не позволит ощущение боли в мышцах, которая появляется из-за переизбытка молочной кислоты.

Аэробное дыхание — эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать энергию молекул АТФ из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких сторонних противодействий — как препятствует молочная кислота в предыдущем анаэробном процессе.

Роль АТФ в организме

После описания синтеза трех биохимических систем становится понятно, что основная роль АТФ в организме — это обеспечение энергией всех многочисленных биохимических процессов и реакций организма.

То есть большинство энергозатратных процессов у живых существ происходит благодаря АТФ.

Но кроме этого молекула АТФ играет важную роль в синтезе нуклеиновых кислот, регулирует различные биохимические процессы, передает гормональные сигналы клеткам организма и другое.

Вместо выводов

Итак, АТФ – это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе, она даёт энергию для движения.

Важная роль АТФ в организме и жизни человека доказана не только учёными, но и многими спортсменами, бодибилдерами, фитнес-тренерами. Понимание важности этого вопроса помогает сделать тренировки более эффективными и правильно рассчитать свои физнагрузки.

Для всех, кто занимается силовыми тренировками в зале, фитнесом, бегом и другими видами спорта, нужно понимать и помнить – какие блоки упражнений необходимо выполнять в то или иное время тренировки. Благодаря этому можно откорректировать форму фигуры, проработать мышечную структуру, снизить лишний вес и добиться других улучшающих результатов для своего организма.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: