Химический состав переработанной нефти - OXFORDST.RU

Химический состав переработанной нефти

ХИМИЯ НЕФТИ

ХИМИЧЕСКИЙ СОСТАВ НЕФТИ

Общие сведения

Знание химического состава природных нефтяных систем служит отправной точкой для прогнозирования их фазового состояния и свойств фаз при различных термобарических условиях, соответствующих процессам добычи, транспортировки и переработки нефтяных смесей. Тип смеси — нефть, газоконденсат или газ — также зависит от ее химического состава и сочетания термобарических условий в залежи. Химический состав определяет возможное состояние компонентов нефтяных систем при данных условиях — молекулярное или дисперсное.

;Нефтяные системы отличаются многообразием компонентов, способных находиться в молекулярном или дисперсном состоянии в зависимости от внешних условий. Среди них встречаются наиболее и наименее склонные к различного рода межмолекулярным взаимодействиям (ММВ), что в итоге обусловливает ассоциативные явления и исходную дисперсность нефтяных систем при нормальных условиях.

Химический состав для нефти различают как элементный и вещественный.

Основными элементами состава нефти являются углерод (83,5-87 %) и водород (11,5-14 %). Кроме того, в нефти присутствуют:

  • сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);
  • азот в количестве от 0,001 до 1 (иногда до 1,7 %);
  • кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

Из других элементов в нефти присутствуют — железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений.

Углеводороды

(УВ) представляют собой органические соединения углерода и водорода. В нефти в основном содержатся следующие классы углеводородов:

Алканы

В нефти присутствуют газообразные алканы от С1 до С4 (в виде растворённого газа), жидкие алканы С5 – С16, составляют основную массу жидких фракций нефти и твёрдые алканы состава С17 – С53 и более, которые входят в тяжёлые нефтяные фракции и известны как твёдые парафины. Твёрдые алканы присутствуют во всех нефтях, но обычно в небольших количествах — от десятых долей до 5 % (масс.), в редких случаях — до 7-12 % (масс.).

В нефти присутствуют всевозможные изомеры алканов: моно-, ди-, три — , тетразамещенные. Из них превалируют в основном монозамещенные, с одним разветвлением. Метилзамещенные алканы по степени убывания располагаются в ряд: 2-метилзамещенные алканы > 3-метилзамещенные алканы > 4-метил-замещенные алканы.

Таким образом, алканы в различных пропорциях входят в состав всех природных смесей и нефтепродуктов, а их физическое состояние в смеси — в виде молекулярного раствора или дисперсной системы — определяется составом, индивидуальными физическими свойствами компонентов и термобарическими условиями.

Циклоалканы

Из полициклических нафтенов в нефтях идентифицировано только 25 индивидуальных бициклических, пять трициклических и четыре тетра- и пентациклических нафтена. Если в молекуле несколько нафтеновых колец, то последние, как правило, сконденсированы в единый полициклический блок.

Бицикланы С79 чаще всего присутствуют в нефтях ярко выраженного нафтенового типа, в которых их содержание достаточно высоко. Среди этих углеводородов обнаружены (в порядке убывания содержания): бицикле[3,3,0]октан (пенталан), бицикло[3,2,1]октан, бицикло[2,2,2]октан, бицикло[4,3,0]нонан (гидриндан), бицикло[2,2,1]гептан (норборнан) и их ближайшие гомологи. Из трицикланов в нефтях доминируют алкилпергидрофенантрены.

Тетрацикланы нефти представлены главным образом производными циклопентано-пергидрофенантрена — стеранами.

К пентацикланам нефтей относятся углеводороды ряда гопана, лупана, фриделана.

Достоверных сведений об идентификации полициклоалканов с большим количеством циклов нет, хотя на основе структурно-группового и массспектрального анализа можно высказать предположения о присутствии нафтенов с числом циклов, большим пяти. По некоторым данным, высококипящие нафтены содержат в молекулах до 7-8 циклов.

Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые С3, С4 — хотя циклопропан и циклобутан в нефтях не обнаружены), нормальные (С57), средние (C811) и макроциклы (от C12 и более). В основе этой классификации лежит зависимость между размером цикла и возникающими в нем напряжениями, влияющими на стабильность. Для циклоалканов и, прежде всего, для их различных производных, характерны перегруппировки с изменением размеров цикла. Так, при нагревании циклогептана с хлоридом алюминия образуется метилциклогексан, а циклогексан при 30-80°С превращается в метилциклопентан. Пяти- и шестичленные углеродные циклы образуются гораздо легче, чем меньшие и большие циклы. Поэтому в нефтях встречается гораздо больше производных циклогексана и циклопентана, чем производных других циклоалканов.

На основе исследования вязкостно-температурных свойств алкилзамещенных моноциклогексанов в широком интервале температур выяснено, что заместитель по мере его удлинения уменьшает среднюю степень ассоциации молекул. Циклоалканы, в отличие от н-алканов с таким же числом углеродных атомов, находятся в ассоциированном состоянии при более высокой температуре.

Арены

или — соединения, в молекулах которых присутствуют циклические углеводороды с π–сопряжёнными системами. Содержание их в нефти изменяется от 10-15 до 50 %(масс.). К ним относятся представители моноциклических: бензол и его гомологи (толуол, о-, м-, п-ксилол и др.), бициклические: нафталин и его гомологи, трициклические: фенантрен, антрацен и их гомологи, тетрациклические: пирен и его гомологи и другие.

На основе обобщения данных по 400 нефтям показано, что наибольшие концентрации аренов (37 %) характерны для нефтей нафтенового основания (типа), а наименьшие (20 %) — для нефтей парафинового типа. Среди нефтяных аренов преобладают соединения, содержащие не более трех бензольных циклов в молекуле. Концентрации аренов в дистиллятах, кипящих до 500°С, как правило, снижаются на один-два порядка в следующем ряду соединений: бензолы >> нафталины >> фенантрены >> хризены >> пирены >> антрацены.

Общей закономерностью является рост содержания аренов с повышением температуры кипения. При этом арены высших фракций нефти характеризуются не большим числом ароматических колец, а наличием алкильных цепей и насыщенных циклов в молекулах. В бензиновых фракциях обнаружены все теоретически возможные гомологи аренов C6-C9. Углеводороды с малым числом бензольных колец доминируют среди аренов даже в самых тяжелых нефтяных фракциях. Так, по экспериментальным данным моно-, би-, три-, тетра- и пентаарены составляют соответственно 45-58, 24-29, 15-31, 1,5 и до 0,1 % от массы ароматических углеводородов в дистиллятах 370-535°С различных нефтей.

Главное место среди нефтяных аренов бициклического строения (диарены) принадлежит прозводным нафталина, которые могут составлять до 95 % от суммы диаренов и содержать до 8 насыщенных колец в молекуле, а второстепенное — производным дифенила и дифенилалканов. В нефтях идентифицированы все индивидуальные алкилнафталины С11, С12 и многие изомеры С13-C15. Содержание дифенилов в нефтях на порядок ниже содержания нафталинов.

Из нафтенодиаренов в нефтях обнаружены аценафтен, флуорен и ряд его гомологов, содержащих метальные заместители в положениях 1-4.

Триарены представлены в нефтях производными фенантрена и антрацена (с резким преобладанием первых), которые могут содержать в молекулах до 4-5 насыщенных циклов.

Нефтяные тетраарены включают углеводороды рядов хризена, пирена, 2,3- и 3,4-бензофенантрена и трифенилена.

Содержание в нефтях полиаренов с пятью и большим числом конденсированных бензольных циклов очень невелико. Из таких углеводородов в тяжелых нефтяных фракциях обнаружены: 1,2- и 3,4-бензопирены, перилен, 1,2,5,6-дибензоантрацен, 1,1,2-бензоперилен и коронен.

Повышенная склонность аренов, особенно полициклических, к молекулярным взаимодействиям обусловлена низкой энергией возбуждения в процессе гомолитической диссоциации. Для соединений типа антрацена, пирена, хризена и т. п. характерна низкая степень обменной корреляции π–орбиталей и повышенная потенциальная энергия ММВ из-за возникновения обменной корреляции электронов между молекулами. С некоторыми полярными соединениями арены образуют достаточно устойчивые молекулярные комплексы.

Взаимодействие π–электронов в бензольном ядре приводит к сопряжению углерод-углеродных связей. Следствием эффекта сопряжения являются следующие свойства аренов:

  • плоское строение цикла с длиной С-С-связи (0,139 нм), занимающей промежуточное значение между простой и двойной С-С-связью;
  • эквивалентность всех С-С-связей в незамещенных бензолах;
  • склонность к реакциям электрофильного замещения протона на различные группы по сравнению с участием в реакциях присоединения по кратным связям.

Церезины

– углеводороды смешанного строения: парафино–нафтенового, парафино–ароматического, нафтено–ароматического. В основном, это твёрдые алканы с примесью длинноцепочечных УВ , содержащих циклановое или ароматическое ядро. Они являются основной составной частью парафиновых отложений в процессах добычи и подготовки нефтей.

Фракционный, групповой и элементный состав нефти и продуктов ее переработки

Нефть представляет собой вязкую, маслянистую жидкость с характерным запахом. Цвет ее зависит от растворенных в ней смол: темно-бурая, буро-зеленоватая, а иногда светлая, почти бесцветная. На свету нефть слегка флуоресцирует. Она легче воды и всегда образует на водной поверхности растекающиеся (до мономолекулярного слоя) пятна. Плотность нефти зависит от месторождений и колеблется от 770 до 880 кг/м 3 .

Кинематическая вязкость большинства нефтей редко превышает 40–60 мм 2 /с при 20°С. В воде нефть не растворяется, а при интенсивном перемешивании образует стойкие, медленно расслаивающиеся эмульсии. Так как нефть представляет сложную смесь индивидуальных углеводородов, то она не имеет определенных физических констант, таких, как температура кипения, температура застывания и др.

При рассмотрении физических и химических свойств нефти различают три вида ее составов: фракционный, групповой химический и элементный.

Фракционный состав нефти. При атмосферном давлении и повышении температуры из нефти испаряются последовательно различные индивидуальные углеводороды. В зависимости от температурного интервала, в котором выкипают нефтепродукты, они сгруппированы в различные фракции. Следовательно, фракцией называется группа углеводородов, выкипающая в определенном интервале температур.

Ниже приведены интервалы температуры (°С), в которых выкипают общепринятые фракции нефти.

Толиво для реактивных двигателей ……….…120 — 315

После отгона этих фракций остается вязкая темная жидкость, называемая мазутом (от арабского слова макзулат, что означает «отброс»). Долгое время, до конца XIX в., мазут в промышленности не применяли, он был отходом нефтепереработки. Это объяснялось тем, что дальнейшая его переработка была связана с большими трудностями, так как температура перегонки мазутных фракций при атмосферном давлении выше, чем температура их термической деструкции, т. е. разрыва молекул на части под действием температуры. Разделить мазут на фракции удалось только при пониженном давлении (4–6 кПа). Этот процесс, называемый вакуумным, позволил получить из мазута соляровые фракции и дистиллятные смазочные масла (легкие, средние и тяжелые), в том числе и базовые масла для двигателей внутреннего сгорания.

После отгонки из мазута масляных фракций остается гудрон или полугудрон, которые используют для получения остаточных масел и битума.

Групповой химический состав нефти и продуктов ее переработки. Групповым химическим составом нефти называют содержание в ней углеводородов определенных химических групп, характеризуемых соотношением и структурой соединения атомов углерода и водорода.

Читайте также  Самодельная дробилка для дерева

Химические группы (гомологические ряды) углеводородов характеризуются прежде всего количественным соотношением атомов углерода и водорода. Это соотношение выражается общей формулой группы.

Рассмотрим основные; группы углеводородов, содержащихся в нефти и продуктах ее переработки.

Алканы (парафиновые углеводороды) являются насыщенными углеводородами (в них отсутствуют двойные связи). Общая химическая формула алканов СnН2n+2 (где n – число атомов углерода).

Количество алканов в нефтях зависит от месторождения нефти и составляет 25–30 %. В нефтях некоторых месторождений, с учетом растворенных в них газов, содержание алканов достигает 50–70 %. В различных фракциях одной и той же нефти содержание алканов обычно неодинаково и уменьшается по мере увеличения молекулярной массы фракции и температуры конца ее кипения. Например, в головной фракции нефти, выкипающей до 300°С, содержание алканов достигает 88 %. В остаточных фракциях их содержание снижается до 5–10 %.

По своей структуре алканы бывают нормальные и изоалканы.

Структура нормальных алканов представляет собой неразветвленную цепочку атомов углерода, свободные валентности которого заняты водородом.

Если цепочка атомов углерода имеет одно или несколько разветвлений, структура называется изомерной, а имеющие такую структуру алканы называют изоалканами. Общая формула при этом сохраняется (СnН2n+2).

Изомерная структура алканов существенно влияет на их физические и химические свойства. Температура кипения жидких и температура плавления твердых изоалканов, как правило, ниже, чем у нормальных алканов. Нормальные алканы при низких и умеренных температурах обычно очень инертны, в том числе и по отношению к кислороду. Это способствует, например, высокой химической стабильности бензинов, содержащих нормальные алканы. Изоалканы при умеренных температурах обладают меньшей стабильностью.

С повышением температуры стабильность нормальных и изоалканов постепенно понижается, причем понижение стабильности у нормальных алканов происходит сначала примерно таким же темпом как и у изоалканов, но при температуре 250–300°С скорость взаимодействия с окислителем у нормальных алканов резко увеличивается и становится значительно выше, чем у изоалканов с той же молекулярной массой. В зависимости от числа атомов углерода алканы имеют газообразное, жидкое или твердое агрегатное состояние. Алканы, у которых число атомов углерода n = 1. 4, при нормальных условиях являются газами (метан, этан, пропан, бутан). При n = 5. 15 это – жидкости, и после n=16 (гексадекан) нормальные алканы – твердые вещества (находящиеся в нефти и продуктах ее переработки в растворенном состоянии).

Цикланы (нафтеновые углеводороды) также являются насыщенными углеводородами.

Они имеют циклическую структуру, их общая формула СnН2n. Впервые цикланы в нефти были найдены известными русскими химиками В. В. Марковниковым и В. Н. Оглоблиным. Содержание цикланов в различных нефтях составляет от 25 до 75%, а в отдельных фракциях некоторых нефтей – до 80 %. Цикланы содержатся во всех фракциях нефти, и по мере увеличения молекулярной массы и температуры конца кипения фракции количество их в ней возрастает.

Цикланы могут состоять из моноциклических структур обычно пяти или шести членов (т.е. групп СН2), а также бициклических, реже соединений из трех колец. Для полициклических соединений общие формулы имеют вид СnН2n-2; СnН2n-4 и СnН2n-6 в зависимости от количества циклов (т.е. колец). Цикланы, состоящие из трех или четырех колец, в нефтях не обнаружены.

По химическим свойствам и особенно по окислительной стабильности цикланы при нормальных температурах практически так же стабильны, как и нормальные алканы, а при высоких температурах (400°С и выше) приближаются по стойкости к изоалканам, т. е. обладают большей химической стабильностью, чем нормальные алканы.

Некоторые моноцикланы и полицикланы имеют гибридную структуру, в которой к кольцам присоединены цепочки алкановых структур.

В продуктах переработки нефти, особенно в бензинах термического крекинга, содержится значительное количество ненасыщенных углеводородов – алкенов и алкадеинов (олефинов и деолефинов).

Алкены (их общая химическая формула СnН2n) отличаются от алканов наличием одной двойной связи между атомами углерода. Двойная связь с ее способностью к легкому разрыву обусловливает малую химическую стабильность алкенов. Они легко вступают и реакцию присоединения, что является причиной их быстрого окисления и окислительной полимеризации. Этим объясняется недостаточная окислительная стабильность бензинов термического крекинга, в которых содержание ненасыщенных углеводородов достигает 40%.

Алкены, так же как и алканы, имеют нормальные и изомерные структуры, Причем изоалкены более разнообразны, чем изоалканы, так как изменяют свои свойства в зависимости не только от расположения и количества боковых цепей, но и от места двойной связи.

Алкадеины имеют две двойные связи, и это вызывает еще большую их нестабильность и реакционную способность, чем у алкенов. Их общая формула СnН2n-2.

Присутствие в нефтепродуктах алкадиенов придает им ряд отрицательных качеств, в том числе склонность к смолообразованию.

Алкены и алкадеины – ненасыщенные углеводороды, и их присутствие в топливах крайне нежелательно, так как сокращает срок возможного их хранения. В нефтях они практически не содержатся.

Простейшим углеводородом ароматического ряда (ареной) является бензол С6Н6. Он имеет шестизвенную кольцевую структуру с тремя чередующимися двойными и одинарными связями.

Для моноциклических аренов общая формула имеет вид СnН2n-6.

Структура более сложных полициклических аренов (например, нафталина) имеет в своей основе соединения двух или нескольких бензольных шестизвенных колец.

Двойные связи аренов устойчивы и не разрываются даже при воздействии азотной и серной кислот, когда происходит реакция замещения одного из атомов водорода (а не реакция присоединения). Разрыва двойных связей у аренов можно добиться только при высокой температуре и в присутствии катализаторов.

Общее содержание аренов в нефтях относительно невелико. В бензиновых фракциях их содержание обычно не превышает 5–25% и зависит от месторождения нефти. В более тяжелых фракциях содержание аренов может достигать 35%.

Элементный состав нефти. Элементным составом нефти называют содержание в ней отдельных химических элементов, выраженное в процентах по массе.

Анализ нефтей различных месторождений показал, что их элементный состав меняется мало. Основные элементы, входящие в состав нефти и в продукты ее переработки, это углерод и водород. Содержание углерода в среднем 83,5–87%., а водорода 11,5–14%. Кроме углерода и водорода в нефти содержится серы 0,01–5,8%, кислорода 0,1–1,3%, азота 0,03–1,7% и следы металлов.

Углерод и водород входят в состав нефти в виде различных соединений углеводородов; кислород и азот находятся обычно в связанном виде (нафтеновые кислоты, смолы, фенолы, амины и др.). Сера может быть как в связанном, так и в свободном состоянии.

Сера особенно отрицательно влияет на эксплуатационные свойства продуктов, получаемых из нефти, поэтому ее содержание является важным критерием для оценки качества нефти.

Примеси, содержащиеся в нефтях, влияют на качество получаемых из нее топлив и смазочных материалов. Современные методы переработки нефти позволяют полностью освободить ее от примесей и, в первую очередь, от особо вредных, таких, как сера и ее соединения, нефтяные смолы и ряд других. Однако следует учитывать, что очистка нефти или полученных из нее продуктов связана со значительными затратами энергии, реактивов, времени и рабочей силы, а некоторые способы очистки — и с потерей определенного количества ценных продуктов и загрязнением окружающей среды.

Сера в нефтях находится в основном в органических соединениях и смолах. Смолы, содержащиеся в нефти, представляют собой высокомолекулярные соединения, в которых кроме углерода имеются кислород, сера, азот и металлы. Содержание смол в нефти изменяется в широких пределах (от 1 до 40% и более).

Групповой химический состав нефти и продуктов ее переработки

Групповым химическим составом нефти называют содержание в ней углеводородов определенных химических групп, характеризуемых соотношением и структурой соединения атомов углерода и водорода.

По углеводородному составу нефти подразделяют: метаново-нафтеновые; нафтеново-метановые; ароматическо-нафтеновые; нафтеново-ароматические; ароматическо-метановые; метаново-ароматические; метаново-ароматические-нафтеновые. Первым ставится название углеводорода, которого в составе нефти больше.

Рисунок 1 – Структура соединений нефти [13]

Алканы (парафиновые углеводороды). Общая формула СnН2n+2. Количество алканов в нефти зависит от ее месторождения и составляет 25-30 %. В нефтях некоторых месторождений, с учетом растворенных в них газов, содержание алканов достигает 50-70 %. В различных фракциях одной и той же нефти содержание алканов обычно неодинаково и уменьшается по мере увеличения молекулярной массы фракции и температуры конца ее кипения [12].

По своей структуре алканы бывают нормальные и изоалканы. Изомерная структура алканов существенно влияет на их физические и химические свойства. Температура кипения жидких и температура плавления твердых изоалканов, как правило, ниже, чем у нормальных алканов. Нормальные алканы при низких и умеренных температурах обычно очень инертны, в том числе и по отношению к кислороду. Это способствует, например, высокой химической стабильности бензинов, содержащих нормальные алканы. Изоалканы при умеренных температурах обладают меньшей стабильностью [12].

С повышением температуры стабильность нормальных и изоалканов постепенно понижается, причем понижение стабильности у нормальных алканов происходит сначала примерно таким же темпом, как и у изоалканов, но при температуре 250 – 300 °С скорость взаимодействия с окислителем у нормальных алканов резко увеличивается и становится значительно выше, чем у изоалканов с той же молекулярной массой. Этот факт объясняет более высокую детонационную стойкость изоалканов по сравнению с нормальными алканами [12].

Циклоалканы, или нафтеновые углеводороды (нафтены)являются наиболее распространенным классом углеводородов в нефти. Это насыщенные циклические углеводороды ряда циклопентана и циклогексана, а также более сложные полициклические соединения с 2 – 5 циклами в молекуле. Они очень устойчивы к биоразложению. Общая химическая формула – СnH2n [5]. Цикланы содержатся во всех фракциях нефти, и по мере увеличения молекулярной массы и температуры конца кипения фракции количество их в ней возрастает.

Этиленовые углеводороды (алкены или олефины) – ненасыщенные нециклические соединения, содержащие двойные связи между атомами углерода. Общая формула – СnH2n. При нормальных условиях углеводороды С3 и С4 – газы; С5 – С18 – жидкости, высшие олефины – твердые вещества [5].

Ароматические углеводороды (арены) непредельные циклические соединения ряда бензола. Ароматическими называют вещества, в составе которых имеются бензольные кольца. Общая формула СnH2n-6m. В ароматических соединениях, содержащихся в сырых нефтях, количество атомов углерода колеблется от 6 до 13 [5, 7]. Общее содержание аренов в нефтях относительно невелико. В бензиновых фракциях их содержание обычно не превышает 5 – 25 % и зависит от месторождения нефти. В более тяжелых фракциях содержание аренов может достигать 35 % [12].

Читайте также  Как сделать дерево дробилку?

Полициклические ароматические углеводороды (ПАУ) высокомолекулярные органические соединения, в состав которых входит от трех до восьми бензольных колец. Как и в бензоле, атомы водорода в них могут быть замещены алкильными группами. Содержание ПАУ в нефти составляет 1 – 4%, в том числе бенз(а)пирена – 5·10 -5 – 2·10 -4 %; в нефтяных фракциях оно возрастает в ряду тяжелый газойль → смазочные масла → нефтяной остаток [5].

В сырых нефтях содержание асфальтенов и смол может достигать 15%. Эти соединения содержат карбонильную и карбоксильную функциональные группы, а также меркаптогруппы, так как крупные фрагменты их молекул связаны между собой метиленовыми мостиками и гетероатомами кислорода, серы и азота [7].

Элементный состав нефти

Химические элементы, входящие в состав нефти, варьируют от 3% до 4%. Основные химические элементы нефти – это углерод (82-87 %) и водород (12-14 %). Встречается также часто сера, содержание которой достигает до 6,0 %. Среднее содержание кислорода и азота обычно составляет десятые доли процента, но может достигать 2,0%. Минеральные соли, органические кислоты и другие микроэлементы в нефти содержатся на уровне десятых и сотых долей процента [7].

В зависимости от массовой доли серы нефть подразделяют на классы (Таблица 2).

Таблица 2 – Классы нефти [14]

Класс нефти Наименование Содержание серы, % мас.
Малосернистая До 0,60 включительно
Сернистая От 0,61 до 1,80
Высокосернистая От 1,81 до 3,50
Особо высокосернистая Свыше 3,50

К настоящему времени в нефтях обнаружено более 30 элементов-металлов и 20 элементов-неметаллов, средние концентрации микроэлементов в нефтях уменьшаются в такой последовательности: Cl, V, Fe, Ca, Ni, Na, K, Mg, Si, Al, I, Br, Hg, Zn, P, Mo, Cr, Sr, Rb, Co, Mn, Ba, Se, As, Ga, Cs, Ge, Ag, Sb, U, Hf, Eu, Re, La, Sc, Pb, Au, Be, Ti, Sn. Наибольшего внимания заслуживают переходные и щелочноземельные металлы, способные образовывать комплексы, сюда относятся V, Ni, Fе, Zn, Са, Нg, Сr, Сu, Мn. Источником металлов в нефтях, как предполагают, могут быть организмы-нефтеобразователи, а также адсорбируемые или попавшие (в процессе миграции из пород или вод) микроэлементы, причем наблюдается прямолинейная зависимость между содержанием тех или иных элементов. Например, концентрация V тем больше, чем выше содержание серы, а Ni — чем выше содержание азота, и в целом, чем выше содержание атома-лиганда. Часть металлов в нефтях находится в форме солей органических кислот типа R-СООМ или хелатных комплексов, в которых атом металла размещен в координационном центре порфиринового цикла или в конденсированных ароматических фрагментах [15].

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Химическая формула нефти и описание составляющих

Нефть является природным полезным ископаемым, которое представляет собой маслянистую горючую жидкость, нередко – черного цвета, хотя встречаются нефти и других цветовых оттенков (коричневого, вишневого, зеленоватого, желтоватого и прозрачного). Её добывают с помощью такой горной выработки, как нефтяная скважина, для формирования которой применяется бурение горных пород.

  • Из чего состоит нефть? Хим. состав нефти
  • Общая химическая структура нефти
  • Парафиновые углеводороды
  • Углеводороды нафтеновой группы
  • Ароматические углеводороды
  • Непредельные углеводороды
  • Соединения серы
  • Кислородные соединения
  • Смолисто-асфальтовые компоненты
  • Соединения азота

По своему химическому составу нефть представляет собой сложную смесь углеводородов с различными примесями. В её состав включены соединения таких хим. элементов, как сера, азот и так далее.

Запах этого хим. вещества также различается, в зависимости от содержания в нем сернистых соединений и углеводородов ароматической группы.

Из чего состоит нефть? Хим. состав нефти

Нефть состоит из углеводородов, которые с химической точки зрения представляют собой соединения атомов углерода и водорода. В общем виде нефть – формула, описываемая как CxHy.

К примеру, такой самый простой углеводород, как метан, состоит из одного атома углерода, связанного с четырьмя атомами водорода. Другими словами, формула метана – CH4. Он относится к так называемым легким углеводородам и всегда есть в составе любой нефти.

В зависимости от того, какова концентрация в этом веществе различных видов углеводородных соединений, хим. и физические свойства нефти могут быть различны. Другими словами, компоненты нефти влияют на её свойства и внешний вид. Она может быть как текучей и прозрачной, так и черной и малоподвижной, причем настолько, что из-за высокой вязкости не выливается даже из перевернутого из сосуда.

Хим. состав обычной нефти представлен следующими хим. элементами:

  • углеродом (около 84-х процентов);
  • водородом на уровне 14-ти процентов;
  • серой и её соединениями в количестве от одного до трех процентов (сульфиды, дисульфиды, сероводород и сама сера);
  • азотом, доля которого – меньше процента;
  • кислородом (также меньше 1-го %);
  • различными металлами, общая концентрация которых также меньше 1 % (железо, ванадий, никель, хром, медь, молибден, кобальт и так далее);
  • различными солями, доля которых также менее процента (например, хлоридом кальция, хлоридом магния, хлоридом натрия и прочими).

Нефть и сопутствующий ей, как правило, углеводородный газ могут залегать на глубине от десятков метров до пяти-шести километров. Стоит сказать, что при глубине залегания более шести километров находят только газ, а если глубина залегания продуктивного слоя менее одного километра, то встречается только нефть. В основном продуктивные пласты находятся глубже одного, но выше шести километров, и там бывают как нефтеносные, так и газоносные слои.

Породы, в которых залегает углеводородное сырье, называются коллекторы. Если описать коллектор простыми словами, то нефть как бы находится в плотной и твердой губке, состоящей из нефтеносных слоев различной пористости.

Общая химическая структура нефти

Состав и свойства нефти оказывают большое влияние на её дальнейшую переработку. Содержание углеводорода в нефти может варьироваться от 83-х до 87-ми процентов, водорода – от 12-ти до 14-ти %, а содержание серы колеблется в районе 1-го – 3-х %. Эту сложную химическую смесь в основном представляют различные соединения углерода и водорода: парафиновые, нафтеновые и ароматические.

Основные компоненты нефти – это углеводородные соединения, которые бывают следующих видов:

Парафиновые углеводороды

Этот компонент нефти имеет и другое название – алканы. Общая химическая формула – СnН2n + 2.

Если в парафинах менее четырех атомов углерода, то это – газы, известные нам как этан, метан, бутан. пропан, изобутан. Их отличает высокий показатель детонационной стойкости. Другими словами, их октановое число (если считать по моторному методу) – более 100.

Если в таких углеводородах от пяти до пятнадцати углеродных атомов, то это – жидкости. Если атомов углерода больше 15-ти, то это – твердые вещества.

В различных видах топлива и смазочных материалов концентрация алканов весьма высока, вследствие чего для этих нефтепродуктов характерна высокая стабильность. Для автомобильных бензинов высокого качества крайне желательно наличие в их составе изопарафиновых соединений, поскольку они весьма устойчивы к кислородному воздействию в условиях высоких температур.

Наличие в составе топлива нормальных парафинов, которые при высоких температурных значениях легко окисляются, значительно уменьшает уровень детонационной стойкости бензина, однако одновременно уменьшает время, которое проходит с момента подачи бензина в двигатель внутреннего сгорания до воспламенения топливной смеси, а это позволяет наращивать давление более плавно, что благотворно влияет на работу двигателя. В связи с этим наличие нормальных парафиновых соединений желательно в более тяжелом дизельном топливе, хотя в его зимних сортах количество таких парафинов ограничивается.

Углеводороды нафтеновой группы

Другое название – цикланы. Представляют собой насыщенные циклические углеводородные соединения, общая формула которых выглядит как СnН2n. В нефти цикланы представлены как циклопентан(С5Н10) и циклогексан(С6Н12 ).

Благодаря своему циклическому строению, цикланы отличаются высокой химической прочностью. Углеводороды нафтеновой группы при сгорании выделяют меньше теплоты (если сравнивать их с парафиновыми соединениями), однако также обладают высокой детонационной стойкостью. В связи с этим желательно их присутствие в топливах, используемых в карбюраторных двигателях, а также и зимних сортах дизтоплива.

Смазочные нефтепродукты, содержащие нафтеновые углеводороды, более вязкие и маслянистые.

Ароматические углеводороды

Другое название – арены. Их эмпирическая формула – СnН2n6. В нефти они представлены как бензол (формула С6Н6 ) и его гомологи.

Благодаря высокому показателю своей термической устойчивости, арены являются желательными компонентами в карбюраторных топливах, октановое число которых должно быть как можно выше. Однако, поскольку арены обладают высокой нагарообразующей способностью, их содержание в бензинах допустимо до отметки 40 – 45 процентов.

Из-за своей высокой термической стабильности наличие аренов в дизельных видах топлива нежелательно.

Непредельные углеводороды

Другое название – олефины. В сырой нефти они не содержатся, а образуются во время нефтепереработки. Непредельные углеводородные соединения – это важнейшее сырье, необходимое для получения топлива с помощью нефтехимических методов и основным органическим синтезом.

Общая эмпирическая формула таких углеводородов – СnН2n (к примеру, С2Н4 – это всем известный этилен).

Низкий уровень химической стойкости олефинов негативно сказывается на практической эксплуатации нефтепродуктов, поскольку снижает уровень их стабильности. К примеру, бензины, получаемые с помощью термического крекингового процесса, в результате окисления содержащихся в них олефинов осмоляются в процессе хранения и загрязняют карбюраторные жиклеры и впускные трубопроводы. Другими словами, присутствие олефиновых соединений в любых видах нефтепродуктов нежелательно.

Соединения серы

На большом числе месторождений добывают сернистую или высокосернистую нефть.

При переработке такого сырья необходимы дополнительные затраты, поскольку увеличение концентрации серы в бензине с 0,033 до 0,15 процентов приводит к:

  • снижению мощности двигателя на 10,5 процентов;
  • увеличению расхода топлива на 12 процентов;
  • возрастанию количества необходимых капремонтов вдвое.

Помимо этого, того, сернистое топливо сильно вредит экологии окружающей нас среды.

Соединения серы делятся на активные и не активные. Активные вызывают коррозию металлов в нормальных атмосферных условиях. К ним относятся:

И в растворенном, и во взвешенном состоянии, они оказывают сильное коррозионное воздействие на металлы практически при любых температурах, поэтому их присутствие в нефтепродуктах – недопустимо.

Неактивные соединения серы в нормальных условиях коррозию не вызывают.

Однако, после полного сгорания топлива они образуют в двигателе серные и сернистые ангидриды, которые в соединении с водой образуют серную и сернистую кислоту.

Читайте также  Загрязнение мирового океана пластмассовыми отходами

Энергия недр

Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает

Две гипотезы

У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.

Необходимые условия для превращения органики в нефть возникают на глубине в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе градиента Градиент давления характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.

60 млн лет может занимать природный процесс образования нефти из органических останков

Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.

Состав и свойства нефти

ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ

Основные химические элементы, из которых состоит нефть: углерод — водород — и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).

От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.

Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?

С точки зрения современных сторонников неорганической, или минеральной, гипотезы, углеводороды образуются из содержащихся в мантии Земли воды и углекислого газа в присутствии закисных соединений металлов на глубинах Высокое давление в недрах земли препятствует термической деструкции сложных молекул углеводородов. В свою очередь сторонники органики не отрицают, что простые углеводороды, например метан, могут иметь и неорганическое происхождение. Опыты, направленные на подтверждение абиогенной теории, показали, что получаемые углеводороды могут содержать не более пяти атомов углерода, а нефть представляет собой смесь более тяжелых соединений. Этому противоречию объяснений пока нет.

Этапы образования нефти

СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ

  • осадконакопление (седиментогенез) — в процессе накопления осадка остатки живых организмов выпадают на дно водных бассейнов или захороняются в континентальной обстановке;
  • биохимическая (диагенез) — происходит уплотнение, обезвоживание осадка и биохимические процессы в условиях ограниченного доступа кислорода;
  • протокатагенез — опускание пласта органических остатков на глубину до при медленном подъеме температуры и давления;
  • мезокатагенез, или главная фаза нефтеобразования (ГФ Н), — опускание пласта органических остатков на глубину до при подъеме температуры до 150°C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит «отжим» нефти за счет перепада давления и эмиграционный вынос микронефти в пласты-коллекторы, а по ним — в ловушки;
  • апокатагенез керогена, или главная фаза газообразования (ГФГ ), — опускание пласта органических остатков на глубину (как правило, более 4,5 км) при подъеме температуры до 180—250°C. При этом органическое вещество теряет нефтегенерирующий потенциал и генерирует газ.

В ловушке

Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.

В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.

Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.

Типы коллекторов

БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ

Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.

Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.

Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.

Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.

Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: